On q–Analogues of Caputo Derivative and Mittag–Leffler Function
Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 359-373.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Based on the fractional q–integral with the parametric lower limit of integration, we consider the fractional q–derivative of Caputo type. Especially, its applications to q-exponential functions allow us to introduce q–analogues of the Mittag–Leffler function. Vice versa, those functions can be used for defining generalized operators in fractional q–calculus.
Keywords: Mittag-Leffler Function, q–Integral, q–Derivative, Fractional Integral, Fractional Derivative, 33D60, 33E12, 26A33
@article{FCAA_2007_10_4_a1,
     author = {Rajkovic, Predrag and Marinkovic, Sladjana and Stankovic, Miomir},
     title = {On {q{\textendash}Analogues} of {Caputo} {Derivative} and {Mittag{\textendash}Leffler} {Function}},
     journal = {Fractional calculus and applied analysis},
     pages = {359--373},
     publisher = {mathdoc},
     volume = {10},
     number = {4},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a1/}
}
TY  - JOUR
AU  - Rajkovic, Predrag
AU  - Marinkovic, Sladjana
AU  - Stankovic, Miomir
TI  - On q–Analogues of Caputo Derivative and Mittag–Leffler Function
JO  - Fractional calculus and applied analysis
PY  - 2007
SP  - 359
EP  - 373
VL  - 10
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a1/
LA  - en
ID  - FCAA_2007_10_4_a1
ER  - 
%0 Journal Article
%A Rajkovic, Predrag
%A Marinkovic, Sladjana
%A Stankovic, Miomir
%T On q–Analogues of Caputo Derivative and Mittag–Leffler Function
%J Fractional calculus and applied analysis
%D 2007
%P 359-373
%V 10
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a1/
%G en
%F FCAA_2007_10_4_a1
Rajkovic, Predrag; Marinkovic, Sladjana; Stankovic, Miomir. On q–Analogues of Caputo Derivative and Mittag–Leffler Function. Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 359-373. http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a1/