Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets
Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 327-342
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
This paper aims to study the q-wavelets and the continuous q-wavelet
transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using
the q-Riemann-Liouville and the q-Weyl transforms, we give some relations
between the continuous q-wavelet transform, studied in [3], and the continuous
q-wavelet transform associated with the q-Bessel operator, and we
deduce formulas which give the inverse operators of the q-Riemann-Liouville
and the q-Weyl transforms.
Keywords:
q-Bessel Operator, q-Wavelet, q-Riemann-Liou-Ville, q-Weyl Operators, 42A38, 42C40, 33D15, 33D60
@article{FCAA_2007_10_4_a0,
author = {Fitouhi, Ahmed and Bettaibi, N\'eji and Binous, Wafa},
title = {Inversion {Formulas} for the {q-Riemann-Liouville} and {q-Weyl} {Transforms} {Using} {Wavelets}},
journal = {Fractional calculus and applied analysis},
pages = {327--342},
publisher = {mathdoc},
volume = {10},
number = {4},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a0/}
}
TY - JOUR AU - Fitouhi, Ahmed AU - Bettaibi, Néji AU - Binous, Wafa TI - Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets JO - Fractional calculus and applied analysis PY - 2007 SP - 327 EP - 342 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a0/ LA - en ID - FCAA_2007_10_4_a0 ER -
%0 Journal Article %A Fitouhi, Ahmed %A Bettaibi, Néji %A Binous, Wafa %T Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets %J Fractional calculus and applied analysis %D 2007 %P 327-342 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a0/ %G en %F FCAA_2007_10_4_a0
Fitouhi, Ahmed; Bettaibi, Néji; Binous, Wafa. Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets. Fractional calculus and applied analysis, Tome 10 (2007) no. 4, pp. 327-342. http://geodesic.mathdoc.fr/item/FCAA_2007_10_4_a0/