Integral Representations of Generalized Mathieu Series Via Mittag-Leffler Type Functions
Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 127-138
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The main purpose of this paper is to present a number of potentially
useful integral representations for the generalized Mathieu series as well as
for its alternating versions via Mittag-Leffler type functions.
Keywords:
Integral Representations, Mathieu Series, Mittag-Leffler Functions, Laplace Transform, 33C05, 33C10, 33C20, 33C60, 33E12, 33E20, 40A30
@article{FCAA_2007_10_2_a2,
author = {Tomovski, \v{Z}ivorad},
title = {Integral {Representations} of {Generalized} {Mathieu} {Series} {Via} {Mittag-Leffler} {Type} {Functions}},
journal = {Fractional calculus and applied analysis},
pages = {127--138},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a2/}
}
TY - JOUR AU - Tomovski, Živorad TI - Integral Representations of Generalized Mathieu Series Via Mittag-Leffler Type Functions JO - Fractional calculus and applied analysis PY - 2007 SP - 127 EP - 138 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a2/ LA - en ID - FCAA_2007_10_2_a2 ER -
Tomovski, Živorad. Integral Representations of Generalized Mathieu Series Via Mittag-Leffler Type Functions. Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 127-138. http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a2/