On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials
Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 123-126
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In the process of constructing empirical mathematical models of physical phenomena using the fractional calculus, investigators are usually faced with the choice of which definition of the fractional derivative to use, the
Riemann-Liouville definition or the Caputo definition. This investigation
presents the case that, with some minimal restrictions, the two definitions
produce completely equivalent mathematical models of the linear viscoelastic phenomenon.
Keywords:
Riemann-Liouville and Caputo Fractional Derivatives, Fractional Calculus, Linear Viscoelastic Materials, 26A33
@article{FCAA_2007_10_2_a1,
author = {Bagley, Ron},
title = {On the {Equivalence} of the {Riemann-Liouville} and the {Caputo} {Fractional} {Order} {Derivatives} in {Modeling} of {Linear} {Viscoelastic} {Materials}},
journal = {Fractional calculus and applied analysis},
pages = {123--126},
year = {2007},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a1/}
}
TY - JOUR AU - Bagley, Ron TI - On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials JO - Fractional calculus and applied analysis PY - 2007 SP - 123 EP - 126 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a1/ LA - en ID - FCAA_2007_10_2_a1 ER -
%0 Journal Article %A Bagley, Ron %T On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials %J Fractional calculus and applied analysis %D 2007 %P 123-126 %V 10 %N 2 %U http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a1/ %G en %F FCAA_2007_10_2_a1
Bagley, Ron. On the Equivalence of the Riemann-Liouville and the Caputo Fractional Order Derivatives in Modeling of Linear Viscoelastic Materials. Fractional calculus and applied analysis, Tome 10 (2007) no. 2, pp. 123-126. http://geodesic.mathdoc.fr/item/FCAA_2007_10_2_a1/