Theorems on the Convergence of Series in Generalized Lommel-Wright Functions
Fractional calculus and applied analysis, Tome 10 (2007) no. 1, pp. 59-74
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The classical Cauchy-Hadamard, Abel and Tauber theorems provide
useful information on the convergence of the power series in complex plane.
In this paper we prove analogous theorems for series in the generalized
Lommel-Wright functions with 4 indices. Results for interesting special
cases of series involving Bessel, Bessel-Maitland, Lommel and Struve functions,
are derived.We provide also a new asymptotic formula for the generalized
Lommel-Wright functions in the case of large values of the index ν
that are used in the proofs of the Cauchy-Hadamard, Abel and Tauber type
theorems for the considered series.
Keywords:
Bessel, Bessel-Maitland, Generalized Bessel-Maitland, Wright, Generalized Lommel-Wright Functions, Cauchy-Hadamard, Abel and Tauber Theorems, 30B10, 30B30, 33C10, 33C20
@article{FCAA_2007_10_1_a3,
author = {Paneva-Konovska, Jordanka},
title = {Theorems on the {Convergence} of {Series} in {Generalized} {Lommel-Wright} {Functions}},
journal = {Fractional calculus and applied analysis},
pages = {59--74},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2007_10_1_a3/}
}
TY - JOUR AU - Paneva-Konovska, Jordanka TI - Theorems on the Convergence of Series in Generalized Lommel-Wright Functions JO - Fractional calculus and applied analysis PY - 2007 SP - 59 EP - 74 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2007_10_1_a3/ LA - en ID - FCAA_2007_10_1_a3 ER -
Paneva-Konovska, Jordanka. Theorems on the Convergence of Series in Generalized Lommel-Wright Functions. Fractional calculus and applied analysis, Tome 10 (2007) no. 1, pp. 59-74. http://geodesic.mathdoc.fr/item/FCAA_2007_10_1_a3/