On Maximal Function on the Laguerre Hypergroup
Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 307-318.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

Let K = [0, ∞)×R be the Laguerre hypergroup which is the fundamental manifold of the radial function space for the Heisenberg group. In this paper we consider the generalized shift operator, generated by Laguerre hypergroup, by means of which the maximal function is investigated. For 1 p ≤ ∞ the Lp(K)-boundedness and weak L1(K)-boundedness result for the maximal function is obtained.
Keywords: Laguerre Hypergroup, Generalized Translation Operator, Fourier-Laguerre Transform, Maximal Function
@article{FCAA_2006_9_3_a6,
     author = {Guliyev, Vagif and Assal, Miloud},
     title = {On {Maximal} {Function} on the {Laguerre} {Hypergroup}},
     journal = {Fractional calculus and applied analysis},
     pages = {307--318},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/}
}
TY  - JOUR
AU  - Guliyev, Vagif
AU  - Assal, Miloud
TI  - On Maximal Function on the Laguerre Hypergroup
JO  - Fractional calculus and applied analysis
PY  - 2006
SP  - 307
EP  - 318
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/
LA  - en
ID  - FCAA_2006_9_3_a6
ER  - 
%0 Journal Article
%A Guliyev, Vagif
%A Assal, Miloud
%T On Maximal Function on the Laguerre Hypergroup
%J Fractional calculus and applied analysis
%D 2006
%P 307-318
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/
%G en
%F FCAA_2006_9_3_a6
Guliyev, Vagif; Assal, Miloud. On Maximal Function on the Laguerre Hypergroup. Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 307-318. http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/