On Maximal Function on the Laguerre Hypergroup
Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 307-318
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
Let K = [0, ∞)×R be the Laguerre hypergroup which is the fundamental
manifold of the radial function space for the Heisenberg group. In this
paper we consider the generalized shift operator, generated by Laguerre
hypergroup, by means of which the maximal function is investigated. For
1 p ≤ ∞ the Lp(K)-boundedness and weak L1(K)-boundedness result for
the maximal function is obtained.
Keywords:
Laguerre Hypergroup, Generalized Translation Operator, Fourier-Laguerre Transform, Maximal Function
@article{FCAA_2006_9_3_a6,
author = {Guliyev, Vagif and Assal, Miloud},
title = {On {Maximal} {Function} on the {Laguerre} {Hypergroup}},
journal = {Fractional calculus and applied analysis},
pages = {307--318},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/}
}
Guliyev, Vagif; Assal, Miloud. On Maximal Function on the Laguerre Hypergroup. Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 307-318. http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a6/