An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform
Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 247-264
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.
Keywords:
Dunkl-Bessel Transform, Beurling-Hörmander’s Theorem, Hardy Theorem, Morgan Theorem, Gelfand-Shilov Theorem, 35R10, 44A15
@article{FCAA_2006_9_3_a3,
author = {Mejjaoli, Hatem},
title = {An {Analogue} of {Beurling-H\"ormander{\textquoteright}s} {Theorem} for the {Dunkl-Bessel} {Transform}},
journal = {Fractional calculus and applied analysis},
pages = {247--264},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {2006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/}
}
TY - JOUR AU - Mejjaoli, Hatem TI - An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform JO - Fractional calculus and applied analysis PY - 2006 SP - 247 EP - 264 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/ LA - en ID - FCAA_2006_9_3_a3 ER -
Mejjaoli, Hatem. An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform. Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 247-264. http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/