An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform
Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 247-264.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.
Keywords: Dunkl-Bessel Transform, Beurling-Hörmander’s Theorem, Hardy Theorem, Morgan Theorem, Gelfand-Shilov Theorem, 35R10, 44A15
@article{FCAA_2006_9_3_a3,
     author = {Mejjaoli, Hatem},
     title = {An {Analogue} of {Beurling-H\"ormander{\textquoteright}s} {Theorem} for the {Dunkl-Bessel} {Transform}},
     journal = {Fractional calculus and applied analysis},
     pages = {247--264},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/}
}
TY  - JOUR
AU  - Mejjaoli, Hatem
TI  - An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform
JO  - Fractional calculus and applied analysis
PY  - 2006
SP  - 247
EP  - 264
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/
LA  - en
ID  - FCAA_2006_9_3_a3
ER  - 
%0 Journal Article
%A Mejjaoli, Hatem
%T An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform
%J Fractional calculus and applied analysis
%D 2006
%P 247-264
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/
%G en
%F FCAA_2006_9_3_a3
Mejjaoli, Hatem. An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform. Fractional calculus and applied analysis, Tome 9 (2006) no. 3, pp. 247-264. http://geodesic.mathdoc.fr/item/FCAA_2006_9_3_a3/