On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
Fractional calculus and applied analysis, Tome 9 (2006) no. 1, pp. 43-56
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.
Keywords:
Dunkl Transform, Bochner-Riesz Means, Partial Dunkl Integrals, Besov-Dunkl Spaces, 44A15, 44A35, 46E30
@article{FCAA_2006_9_1_a3,
author = {Abdelkefi, Chokri and Sifi, Mohamed},
title = {On the {Uniform} {Convergence} of {Partial} {Dunkl} {Integrals} in {Besov-Dunkl} {Spaces}},
journal = {Fractional calculus and applied analysis},
pages = {43--56},
year = {2006},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/}
}
TY - JOUR AU - Abdelkefi, Chokri AU - Sifi, Mohamed TI - On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces JO - Fractional calculus and applied analysis PY - 2006 SP - 43 EP - 56 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/ LA - en ID - FCAA_2006_9_1_a3 ER -
Abdelkefi, Chokri; Sifi, Mohamed. On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces. Fractional calculus and applied analysis, Tome 9 (2006) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/