On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
Fractional calculus and applied analysis, Tome 9 (2006) no. 1, pp. 43-56.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space.
Keywords: Dunkl Transform, Bochner-Riesz Means, Partial Dunkl Integrals, Besov-Dunkl Spaces, 44A15, 44A35, 46E30
@article{FCAA_2006_9_1_a3,
     author = {Abdelkefi, Chokri and Sifi, Mohamed},
     title = {On the {Uniform} {Convergence} of {Partial} {Dunkl} {Integrals} in {Besov-Dunkl} {Spaces}},
     journal = {Fractional calculus and applied analysis},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/}
}
TY  - JOUR
AU  - Abdelkefi, Chokri
AU  - Sifi, Mohamed
TI  - On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
JO  - Fractional calculus and applied analysis
PY  - 2006
SP  - 43
EP  - 56
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/
LA  - en
ID  - FCAA_2006_9_1_a3
ER  - 
%0 Journal Article
%A Abdelkefi, Chokri
%A Sifi, Mohamed
%T On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces
%J Fractional calculus and applied analysis
%D 2006
%P 43-56
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/
%G en
%F FCAA_2006_9_1_a3
Abdelkefi, Chokri; Sifi, Mohamed. On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces. Fractional calculus and applied analysis, Tome 9 (2006) no. 1, pp. 43-56. http://geodesic.mathdoc.fr/item/FCAA_2006_9_1_a3/