Cauchy-Type Problem for Diffusion-Wave Equation with the Riemann-Liouville Partial Derivative
Fractional calculus and applied analysis, Tome 8 (2005) no. 4, pp. 403-430.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The paper is devoted to the study of the Cauchy-type problem for the differential equation [...] involving the Riemann-Liouville partial fractional derivative of order α > 0 [...] and the Laplace operator.
Keywords: Diffusion-Wave Equation of Fractional Order, Riemann-Liouville Partial Fractional Derivative, Cauchy-Type Problem, H-Function, Mittag-Leffler and Wright Functions, Fourier and Laplace Transforms, 35A15, 44A15, 26A33
@article{FCAA_2005_8_4_a4,
     author = {Kilbas, Anatoly and Trujillo, Juan and Voroshilov, Aleksandr},
     title = {Cauchy-Type {Problem} for {Diffusion-Wave} {Equation} with the {Riemann-Liouville} {Partial} {Derivative}},
     journal = {Fractional calculus and applied analysis},
     pages = {403--430},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_4_a4/}
}
TY  - JOUR
AU  - Kilbas, Anatoly
AU  - Trujillo, Juan
AU  - Voroshilov, Aleksandr
TI  - Cauchy-Type Problem for Diffusion-Wave Equation with the Riemann-Liouville Partial Derivative
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 403
EP  - 430
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_4_a4/
LA  - en
ID  - FCAA_2005_8_4_a4
ER  - 
%0 Journal Article
%A Kilbas, Anatoly
%A Trujillo, Juan
%A Voroshilov, Aleksandr
%T Cauchy-Type Problem for Diffusion-Wave Equation with the Riemann-Liouville Partial Derivative
%J Fractional calculus and applied analysis
%D 2005
%P 403-430
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_4_a4/
%G en
%F FCAA_2005_8_4_a4
Kilbas, Anatoly; Trujillo, Juan; Voroshilov, Aleksandr. Cauchy-Type Problem for Diffusion-Wave Equation with the Riemann-Liouville Partial Derivative. Fractional calculus and applied analysis, Tome 8 (2005) no. 4, pp. 403-430. http://geodesic.mathdoc.fr/item/FCAA_2005_8_4_a4/