On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 313-322.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The present paper envisages the applications of Riemann-Liouville fractional q-integral operator to a basic analogue of Fox H-function. Results involving the basic hypergeometric functions like Gq(.), Jv(x; q), Yv(x; q),Kv(x; q), Hv(x; q) and various other q-elementary functions associated with the Riemann-Liouville fractional q-integral operator have been deduced as special cases of the main result.
Keywords: Fractional q-Integral, H-Function, q-Functions, 33D60, 26A33, 33C60
@article{FCAA_2005_8_3_a5,
     author = {Kalla, S. and Yadav, R. and Purohit, S.},
     title = {On the {Riemann-Liouville} {Fractional} {q-Integral} {Operator} {Involving} a {Basic} {Analogue} of {Fox} {H-Function}},
     journal = {Fractional calculus and applied analysis},
     pages = {313--322},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a5/}
}
TY  - JOUR
AU  - Kalla, S.
AU  - Yadav, R.
AU  - Purohit, S.
TI  - On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 313
EP  - 322
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a5/
LA  - en
ID  - FCAA_2005_8_3_a5
ER  - 
%0 Journal Article
%A Kalla, S.
%A Yadav, R.
%A Purohit, S.
%T On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function
%J Fractional calculus and applied analysis
%D 2005
%P 313-322
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a5/
%G en
%F FCAA_2005_8_3_a5
Kalla, S.; Yadav, R.; Purohit, S. On the Riemann-Liouville Fractional q-Integral Operator Involving a Basic Analogue of Fox H-Function. Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 313-322. http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a5/