An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators
Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 299-312
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a
positive integer. We consider, for a nonnegative real number α, two partial
differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a
generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.
Keywords:
Generalized Fourier Transform, Morgan's Theorem, 42B10, 43A32
@article{FCAA_2005_8_3_a4,
author = {Kamoun, Lotfi},
title = {An {Lp} \ensuremath{-} {Lq} - {Version} of {Morgan's} {Theorem} {Associated} with {Partial} {Differential} {Operators}},
journal = {Fractional calculus and applied analysis},
pages = {299--312},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/}
}
TY - JOUR AU - Kamoun, Lotfi TI - An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators JO - Fractional calculus and applied analysis PY - 2005 SP - 299 EP - 312 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/ LA - en ID - FCAA_2005_8_3_a4 ER -
Kamoun, Lotfi. An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators. Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 299-312. http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/