An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators
Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 299-312.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.
Keywords: Generalized Fourier Transform, Morgan's Theorem, 42B10, 43A32
@article{FCAA_2005_8_3_a4,
     author = {Kamoun, Lotfi},
     title = {An {Lp} \ensuremath{-} {Lq} - {Version} of {Morgan's} {Theorem} {Associated} with {Partial} {Differential} {Operators}},
     journal = {Fractional calculus and applied analysis},
     pages = {299--312},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/}
}
TY  - JOUR
AU  - Kamoun, Lotfi
TI  - An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 299
EP  - 312
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/
LA  - en
ID  - FCAA_2005_8_3_a4
ER  - 
%0 Journal Article
%A Kamoun, Lotfi
%T An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators
%J Fractional calculus and applied analysis
%D 2005
%P 299-312
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/
%G en
%F FCAA_2005_8_3_a4
Kamoun, Lotfi. An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators. Fractional calculus and applied analysis, Tome 8 (2005) no. 3, pp. 299-312. http://geodesic.mathdoc.fr/item/FCAA_2005_8_3_a4/