Fractional Powers of Almost Non-Negative Operators
Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 201-230.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper, we extend the theory of complex powers of operators to a class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and whose resolvent satisfies an estimate ||(λ + A)^(−1)|| ≤ (λ^(−1) + λ^m) M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators strictly contains the class of the non negative operators and the one of operators with polynomially bounded resolvent. We also prove that this theory may be extended to sequentially complete locally convex spaces.
Keywords: Fractional Powers, Non-Negative Operators, Almost Sectorial Operators, Functional Calculus, Semigroups of Operators, 47A60, 47D06
@article{FCAA_2005_8_2_a6,
     author = {Mart{\'\i}nez, Celso and Sanz, Miguel and Redondo, Antonia},
     title = {Fractional {Powers} of {Almost} {Non-Negative} {Operators}},
     journal = {Fractional calculus and applied analysis},
     pages = {201--230},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/}
}
TY  - JOUR
AU  - Martínez, Celso
AU  - Sanz, Miguel
AU  - Redondo, Antonia
TI  - Fractional Powers of Almost Non-Negative Operators
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 201
EP  - 230
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/
LA  - en
ID  - FCAA_2005_8_2_a6
ER  - 
%0 Journal Article
%A Martínez, Celso
%A Sanz, Miguel
%A Redondo, Antonia
%T Fractional Powers of Almost Non-Negative Operators
%J Fractional calculus and applied analysis
%D 2005
%P 201-230
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/
%G en
%F FCAA_2005_8_2_a6
Martínez, Celso; Sanz, Miguel; Redondo, Antonia. Fractional Powers of Almost Non-Negative Operators. Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 201-230. http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/