Fractional Powers of Almost Non-Negative Operators
Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 201-230
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper, we extend the theory of complex powers of operators to a
class of operators in Banach spaces whose spectrum lies in C ]−∞, 0[ and
whose resolvent satisfies an estimate ||(λ + A)^(−1)|| ≤ (λ^(−1) + λ^m)
M for all λ > 0 and for some constants M > 0 and m ∈ R. This class of operators
strictly contains the class of the non negative operators and the one of
operators with polynomially bounded resolvent. We also prove that this
theory may be extended to sequentially complete locally convex spaces.
Keywords:
Fractional Powers, Non-Negative Operators, Almost Sectorial Operators, Functional Calculus, Semigroups of Operators, 47A60, 47D06
@article{FCAA_2005_8_2_a6,
author = {Mart{\'\i}nez, Celso and Sanz, Miguel and Redondo, Antonia},
title = {Fractional {Powers} of {Almost} {Non-Negative} {Operators}},
journal = {Fractional calculus and applied analysis},
pages = {201--230},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/}
}
TY - JOUR AU - Martínez, Celso AU - Sanz, Miguel AU - Redondo, Antonia TI - Fractional Powers of Almost Non-Negative Operators JO - Fractional calculus and applied analysis PY - 2005 SP - 201 EP - 230 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/ LA - en ID - FCAA_2005_8_2_a6 ER -
Martínez, Celso; Sanz, Miguel; Redondo, Antonia. Fractional Powers of Almost Non-Negative Operators. Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 201-230. http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a6/