Fractional Calculus of the Generalized Wright Function
Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The paper is devoted to the study of the fractional calculus of the generalized Wright function
pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
pΨq (z) It is proved that the Riemann-Liouville fractional integrals and derivative of the Wright function are also the Wright functions but of greater order. Special cases are considered.
Keywords:
Riemann-Liouville Fractional Integrals and Derivatives, Generalized Wright Function, Wright And Bessel-Maitland Functions
@article{FCAA_2005_8_2_a1,
author = {Kilbas, Anatoly},
title = {Fractional {Calculus} of the {Generalized} {Wright} {Function}},
journal = {Fractional calculus and applied analysis},
pages = {113--126},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/}
}
Kilbas, Anatoly. Fractional Calculus of the Generalized Wright Function. Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/