Fractional Calculus of the Generalized Wright Function
Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

The paper is devoted to the study of the fractional calculus of the generalized Wright function pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series pΨq (z) It is proved that the Riemann-Liouville fractional integrals and derivative of the Wright function are also the Wright functions but of greater order. Special cases are considered.
Keywords: Riemann-Liouville Fractional Integrals and Derivatives, Generalized Wright Function, Wright And Bessel-Maitland Functions
@article{FCAA_2005_8_2_a1,
     author = {Kilbas, Anatoly},
     title = {Fractional {Calculus} of the {Generalized} {Wright} {Function}},
     journal = {Fractional calculus and applied analysis},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/}
}
TY  - JOUR
AU  - Kilbas, Anatoly
TI  - Fractional Calculus of the Generalized Wright Function
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 113
EP  - 126
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/
LA  - en
ID  - FCAA_2005_8_2_a1
ER  - 
%0 Journal Article
%A Kilbas, Anatoly
%T Fractional Calculus of the Generalized Wright Function
%J Fractional calculus and applied analysis
%D 2005
%P 113-126
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/
%G en
%F FCAA_2005_8_2_a1
Kilbas, Anatoly. Fractional Calculus of the Generalized Wright Function. Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/