Fractional Calculus of the Generalized Wright Function
Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
The paper is devoted to the study of the fractional calculus of the generalized Wright function
pΨq(z) defined for z ∈ C, complex ai, bj ∈ C and real αi, βj ∈ R (i = 1, 2, · · · p; j = 1, 2, · · · , q) by the series
pΨq (z) It is proved that the Riemann-Liouville fractional integrals and derivative of the Wright function are also the Wright functions but of greater order. Special cases are considered.
Keywords:
Riemann-Liouville Fractional Integrals and Derivatives, Generalized Wright Function, Wright And Bessel-Maitland Functions
@article{FCAA_2005_8_2_a1,
author = {Kilbas, Anatoly},
title = {Fractional {Calculus} of the {Generalized} {Wright} {Function}},
journal = {Fractional calculus and applied analysis},
pages = {113--126},
year = {2005},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/}
}
Kilbas, Anatoly. Fractional Calculus of the Generalized Wright Function. Fractional calculus and applied analysis, Tome 8 (2005) no. 2, pp. 113-126. http://geodesic.mathdoc.fr/item/FCAA_2005_8_2_a1/