On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 73-88.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

In this paper the multi-dimensional analog of the Gillis-Weiss random walk model is studied. The convergence of this random walk to a fractional diffusion process governed by a symmetric operator defined as a hypersingular integral or the inverse of the Riesz potential in the sense of distributions is proved.
Keywords: Multi-Dimensional Random Walk, Cauchy Problem, Fractional Diffusion Equation, Pseudo-Differential Operators, Fundamental Solution, Hypersingular Integral, 26A33, 47B06, 47G30, 60G50, 60G52, 60G60
@article{FCAA_2005_8_1_a4,
     author = {Umarov, Sabir and Gorenflo, Rudolf},
     title = {On {Multi-Dimensional} {Random} {Walk} {Models} {Approximating} {Symmetric} {Space-Fractional} {Diffusion} {Processes}},
     journal = {Fractional calculus and applied analysis},
     pages = {73--88},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a4/}
}
TY  - JOUR
AU  - Umarov, Sabir
AU  - Gorenflo, Rudolf
TI  - On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 73
EP  - 88
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a4/
LA  - en
ID  - FCAA_2005_8_1_a4
ER  - 
%0 Journal Article
%A Umarov, Sabir
%A Gorenflo, Rudolf
%T On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes
%J Fractional calculus and applied analysis
%D 2005
%P 73-88
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a4/
%G en
%F FCAA_2005_8_1_a4
Umarov, Sabir; Gorenflo, Rudolf. On Multi-Dimensional Random Walk Models Approximating Symmetric Space-Fractional Diffusion Processes. Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 73-88. http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a4/