Linear Fractional PDE, Uniqueness of Global Solutions
Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 53-62 Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library

Voir la notice de l'article

In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.
Keywords: Functional Calculus, Fractional Calculus, 26A33, 47A60, 30C15
@article{FCAA_2005_8_1_a2,
     author = {Sch\"afer, Ingo and Kempfle, Siegmar and Nolte, Bodo},
     title = {Linear {Fractional} {PDE,} {Uniqueness} of {Global} {Solutions}},
     journal = {Fractional calculus and applied analysis},
     pages = {53--62},
     year = {2005},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/}
}
TY  - JOUR
AU  - Schäfer, Ingo
AU  - Kempfle, Siegmar
AU  - Nolte, Bodo
TI  - Linear Fractional PDE, Uniqueness of Global Solutions
JO  - Fractional calculus and applied analysis
PY  - 2005
SP  - 53
EP  - 62
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/
LA  - en
ID  - FCAA_2005_8_1_a2
ER  - 
%0 Journal Article
%A Schäfer, Ingo
%A Kempfle, Siegmar
%A Nolte, Bodo
%T Linear Fractional PDE, Uniqueness of Global Solutions
%J Fractional calculus and applied analysis
%D 2005
%P 53-62
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/
%G en
%F FCAA_2005_8_1_a2
Schäfer, Ingo; Kempfle, Siegmar; Nolte, Bodo. Linear Fractional PDE, Uniqueness of Global Solutions. Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/