Linear Fractional PDE, Uniqueness of Global Solutions
Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 53-62
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
In this paper we treat the question of existence and uniqueness of solutions of linear fractional partial differential equations. Along examples we show that, due to the global definition of fractional derivatives, uniqueness is only sure in case of global initial conditions.
Keywords:
Functional Calculus, Fractional Calculus, 26A33, 47A60, 30C15
@article{FCAA_2005_8_1_a2,
author = {Sch\"afer, Ingo and Kempfle, Siegmar and Nolte, Bodo},
title = {Linear {Fractional} {PDE,} {Uniqueness} of {Global} {Solutions}},
journal = {Fractional calculus and applied analysis},
pages = {53--62},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/}
}
TY - JOUR AU - Schäfer, Ingo AU - Kempfle, Siegmar AU - Nolte, Bodo TI - Linear Fractional PDE, Uniqueness of Global Solutions JO - Fractional calculus and applied analysis PY - 2005 SP - 53 EP - 62 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/ LA - en ID - FCAA_2005_8_1_a2 ER -
Schäfer, Ingo; Kempfle, Siegmar; Nolte, Bodo. Linear Fractional PDE, Uniqueness of Global Solutions. Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 53-62. http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a2/