Best Constant in the Weighted Hardy Inequality: The Spatial and Spherical Version
Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 39-52
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
The sharp constant is obtained for the Hardy-Stein-Weiss inequality for
fractional Riesz potential operator in the space L^p(R^n, ρ) with the power
weight ρ = |x|^β. As a corollary, the sharp constant is found for a similar
weighted inequality for fractional powers of the Beltrami-Laplace operator
on the unit sphere.
Keywords:
Hardy Inequality, Rellich Inequality, Fractional Powers, Riesz Potentials, Beltrami-Laplace Operator, Stereographic Projection, 26D10
@article{FCAA_2005_8_1_a1,
author = {Samko, Stefan},
title = {Best {Constant} in the {Weighted} {Hardy} {Inequality:} {The} {Spatial} and {Spherical} {Version}},
journal = {Fractional calculus and applied analysis},
pages = {39--52},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a1/}
}
TY - JOUR AU - Samko, Stefan TI - Best Constant in the Weighted Hardy Inequality: The Spatial and Spherical Version JO - Fractional calculus and applied analysis PY - 2005 SP - 39 EP - 52 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a1/ LA - en ID - FCAA_2005_8_1_a1 ER -
Samko, Stefan. Best Constant in the Weighted Hardy Inequality: The Spatial and Spherical Version. Fractional calculus and applied analysis, Tome 8 (2005) no. 1, pp. 39-52. http://geodesic.mathdoc.fr/item/FCAA_2005_8_1_a1/