Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω
Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 437-458
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
There are known various statements on weighted action of one-dimensional and multidimensional fractional integration operators in spaces of continuous functions, such as weighted generalized Hölder spaces Hω0(ρ) of functions with a given dominant ω of their continuity modulus.
Keywords:
Fractional Integration Operators, Generalized Hölder Spaces, Zygmund Conditions, Bari-Stechkin Class, Orlicz Type Indices, 26A16, 26A33, 46E15
@article{FCAA_2004_7_4_a4,
author = {Karapetyants, Nikolai and Samko, Natasha},
title = {Weighted {Theorems} on {Fractional} {Integrals} in the {Generalized} {H\"older} {Spaces} via {Indices} m\ensuremath{\omega} and {M\ensuremath{\omega}}},
journal = {Fractional calculus and applied analysis},
pages = {437--458},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/}
}
TY - JOUR AU - Karapetyants, Nikolai AU - Samko, Natasha TI - Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω JO - Fractional calculus and applied analysis PY - 2004 SP - 437 EP - 458 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/ LA - en ID - FCAA_2004_7_4_a4 ER -
%0 Journal Article %A Karapetyants, Nikolai %A Samko, Natasha %T Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω %J Fractional calculus and applied analysis %D 2004 %P 437-458 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/ %G en %F FCAA_2004_7_4_a4
Karapetyants, Nikolai; Samko, Natasha. Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω. Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 437-458. http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/