Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω
Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 437-458.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

There are known various statements on weighted action of one-dimensional and multidimensional fractional integration operators in spaces of continuous functions, such as weighted generalized Hölder spaces Hω0(ρ) of functions with a given dominant ω of their continuity modulus.
Keywords: Fractional Integration Operators, Generalized Hölder Spaces, Zygmund Conditions, Bari-Stechkin Class, Orlicz Type Indices, 26A16, 26A33, 46E15
@article{FCAA_2004_7_4_a4,
     author = {Karapetyants, Nikolai and Samko, Natasha},
     title = {Weighted {Theorems} on {Fractional} {Integrals} in the {Generalized} {H\"older} {Spaces} via {Indices} m\ensuremath{\omega} and {M\ensuremath{\omega}}},
     journal = {Fractional calculus and applied analysis},
     pages = {437--458},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/}
}
TY  - JOUR
AU  - Karapetyants, Nikolai
AU  - Samko, Natasha
TI  - Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω
JO  - Fractional calculus and applied analysis
PY  - 2004
SP  - 437
EP  - 458
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/
LA  - en
ID  - FCAA_2004_7_4_a4
ER  - 
%0 Journal Article
%A Karapetyants, Nikolai
%A Samko, Natasha
%T Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω
%J Fractional calculus and applied analysis
%D 2004
%P 437-458
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/
%G en
%F FCAA_2004_7_4_a4
Karapetyants, Nikolai; Samko, Natasha. Weighted Theorems on Fractional Integrals in the Generalized Hölder Spaces via Indices mω and Mω. Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 437-458. http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a4/