On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin
Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 409-420.

Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library

We prove that Dirac’s (symmetrical) delta function and the Hausdorff dimension function build up a pair of reciprocal functions. Our reasoning is based on the theorem by Mellin. Applications of the reciprocity relation demonstrate the merit of this approach.
Keywords: Dirac’S Delta Function, Hausdorff Dimension Function, Pair of Reciprocal Functions Due to the Theorem by Mellin, 44A05, 46F12, 28A78
@article{FCAA_2004_7_4_a2,
     author = {S\"udland, Norbert and Baumann, Gerd},
     title = {On the {Mellin} {Transforms} of {Dirac{\textquoteright}S} {Delta} {Function,} {The} {Hausdorff} {Dimension} {Function,} and {The} {Theorem} by {Mellin}},
     journal = {Fractional calculus and applied analysis},
     pages = {409--420},
     publisher = {mathdoc},
     volume = {7},
     number = {4},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/}
}
TY  - JOUR
AU  - Südland, Norbert
AU  - Baumann, Gerd
TI  - On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin
JO  - Fractional calculus and applied analysis
PY  - 2004
SP  - 409
EP  - 420
VL  - 7
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/
LA  - en
ID  - FCAA_2004_7_4_a2
ER  - 
%0 Journal Article
%A Südland, Norbert
%A Baumann, Gerd
%T On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin
%J Fractional calculus and applied analysis
%D 2004
%P 409-420
%V 7
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/
%G en
%F FCAA_2004_7_4_a2
Südland, Norbert; Baumann, Gerd. On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin. Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 409-420. http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/