On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin
Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 409-420
Voir la notice de l'article provenant de la source Bulgarian Digital Mathematics Library
We prove that Dirac’s (symmetrical) delta function and the Hausdorff
dimension function build up a pair of reciprocal functions. Our reasoning
is based on the theorem by Mellin. Applications of the reciprocity relation
demonstrate the merit of this approach.
Keywords:
Dirac’S Delta Function, Hausdorff Dimension Function, Pair of Reciprocal Functions Due to the Theorem by Mellin, 44A05, 46F12, 28A78
@article{FCAA_2004_7_4_a2,
author = {S\"udland, Norbert and Baumann, Gerd},
title = {On the {Mellin} {Transforms} of {Dirac{\textquoteright}S} {Delta} {Function,} {The} {Hausdorff} {Dimension} {Function,} and {The} {Theorem} by {Mellin}},
journal = {Fractional calculus and applied analysis},
pages = {409--420},
publisher = {mathdoc},
volume = {7},
number = {4},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/}
}
TY - JOUR AU - Südland, Norbert AU - Baumann, Gerd TI - On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin JO - Fractional calculus and applied analysis PY - 2004 SP - 409 EP - 420 VL - 7 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/ LA - en ID - FCAA_2004_7_4_a2 ER -
%0 Journal Article %A Südland, Norbert %A Baumann, Gerd %T On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin %J Fractional calculus and applied analysis %D 2004 %P 409-420 %V 7 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/ %G en %F FCAA_2004_7_4_a2
Südland, Norbert; Baumann, Gerd. On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin. Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 409-420. http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a2/