On the Range of the Fourier Transform Associated with the Spherical Mean Operator
Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 339-402
Cet article a éte moissonné depuis la source Bulgarian Digital Mathematics Library
We characterize the range of some spaces of functions by the Fourier
transform associated with the spherical mean operator R and we give a
new description of the Schwartz spaces. Next, we prove a Paley-Wiener and
a Paley-Wiener-Schawrtz theorems.
Keywords:
Spherical Mean Operator, Fourier Transform, Paley-Wiener-Schawrtz Theorems, 42B35, 43A32, 35S30
@article{FCAA_2004_7_4_a0,
author = {Jelassi, M. and Rachdi, L.},
title = {On the {Range} of the {Fourier} {Transform} {Associated} with the {Spherical} {Mean} {Operator}},
journal = {Fractional calculus and applied analysis},
pages = {339--402},
year = {2004},
volume = {7},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a0/}
}
TY - JOUR AU - Jelassi, M. AU - Rachdi, L. TI - On the Range of the Fourier Transform Associated with the Spherical Mean Operator JO - Fractional calculus and applied analysis PY - 2004 SP - 339 EP - 402 VL - 7 IS - 4 UR - http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a0/ LA - en ID - FCAA_2004_7_4_a0 ER -
Jelassi, M.; Rachdi, L. On the Range of the Fourier Transform Associated with the Spherical Mean Operator. Fractional calculus and applied analysis, Tome 7 (2004) no. 4, pp. 339-402. http://geodesic.mathdoc.fr/item/FCAA_2004_7_4_a0/