Continuous selection of approximate Monge solutions in the Kantorovich problem with a parameter
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 137-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Kantorovich optimal transportation problem in the case where the cost function and marginal distributions continuously depend on a parameter with values in a metric space. We prove the existence of approximate optimal Monge mappings continuous with respect to the parameter.
Keywords: Kantorovich problem, Monge problem, continuity with respect to a parameter.
Mots-clés : optimal transportation problem
@article{FAA_2024_58_2_a8,
     author = {Svetlana Popova},
     title = {Continuous selection of approximate {Monge} solutions in the {Kantorovich} problem with a parameter},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {137--156},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a8/}
}
TY  - JOUR
AU  - Svetlana Popova
TI  - Continuous selection of approximate Monge solutions in the Kantorovich problem with a parameter
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 137
EP  - 156
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a8/
LA  - ru
ID  - FAA_2024_58_2_a8
ER  - 
%0 Journal Article
%A Svetlana Popova
%T Continuous selection of approximate Monge solutions in the Kantorovich problem with a parameter
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 137-156
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a8/
%G ru
%F FAA_2024_58_2_a8
Svetlana Popova. Continuous selection of approximate Monge solutions in the Kantorovich problem with a parameter. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 137-156. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a8/

[1] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR | Zbl

[2] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differ. Equ., 58:6 (2019), 203, 28 pp. | DOI | MR | Zbl

[3] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl

[4] J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481 | DOI | MR | Zbl

[5] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[6] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[7] V. I. Bogachev, “Kantorovich problems with a parameter and density constraints”, Siberian Math. J., 63:1 (2022), 34–47 | DOI | MR | Zbl

[8] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | DOI | MR | Zbl

[9] V. I. Bogachev, A. N. Kalinin, S. N. Popova, “On the equality of values in the Monge and Kantorovich problems”, J. Math. Sci. (N.Y.), 238:4 (2019), 377–389 | DOI | MR | Zbl

[10] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl

[11] V. I. Bogachev, I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp. | DOI | MR | Zbl

[12] V. I. Bogachev, S. N. Popova, “Hausdorff distances between couplings and optimal transportation with a parameter”, Mat. Sbornik, 215:1 (2024) | DOI

[13] V. I. Bogachev, S. N. Popova, “On Kantorovich problems with a parameter”, Dokl. Math., 106:3 (2022), 426–428 | DOI | DOI | MR | Zbl

[14] V. I. Bogachev, S. N. Popova, A. V. Rezbaev, “On nonlinear Kantorovich problems with density constraints”, Mosc. Math. J., 23:3 (2023), 285–307 | DOI | MR | Zbl

[15] R. Engelking, General topology, Monogr. Mat., 60, PWN–Polish Sci. Publ., Warsaw, 1977, 626 pp. | MR | MR | Zbl

[16] M. Ghossoub, D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117 | DOI | MR

[17] N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405 | DOI | MR | Zbl

[18] I. I. Malofeev, “Measurable dependence of conditional measures on a parameter”, Dokl. Math., 94:2 (2016), 493–497 | DOI | DOI | MR | Zbl

[19] S. N. Popova, On nonlinear Kantorovich problems for cost functions of a special form, arXiv: 2212.10473

[20] A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincaré Probab. Statist., 43:1 (2007), 1–13 | DOI | MR | Zbl

[21] S. T. Rachev, L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N.Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp. ; v. II, Applications, xxvi+430 pp. | DOI | MR | Zbl | DOI | MR

[22] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp. | DOI | MR | Zbl

[23] A. Savchenko, M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39

[24] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp. | DOI | MR | Zbl

[25] Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84 | DOI | MR | Zbl