On the conjugacy of measurable partitions with respect to the normalizer of a full type $\mathrm{II}_1$ ergodic group
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 115-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $G$ be a countable ergodic group of automorphisms of a measure space $(X,\mu)$ and $\mathcal{N}[G]$ be the normalizer of its full group $[G]$. Problem: for a pair of measurable partitions $\xi$ and $\eta$ of the space $X$, when does there exist an element $g\in\mathcal{N}[G]$ such that $g\xi=\eta$? For a wide class of measurable partitions, we give a solution to this problem in the case where $G$ is an approximately finite group with finite invariant measure. As a consequence, we obtain results concerning the conjugacy of the commutative subalgebras that correspond to $\xi$ and $\eta$ in the type $\mathrm{II}_1$ factor constructed via the orbit partition of the group $G$.
Keywords: automorphisms of measurable space, measurable partition, full group, normalizer, von Neumann factor.
Mots-clés : orbit partitions
@article{FAA_2024_58_2_a7,
     author = {Andrei Lodkin and Benzion Rubshtein},
     title = {On the conjugacy of measurable partitions with~respect to~the~normalizer of a full type $\mathrm{II}_1$ ergodic group},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {115--136},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a7/}
}
TY  - JOUR
AU  - Andrei Lodkin
AU  - Benzion Rubshtein
TI  - On the conjugacy of measurable partitions with respect to the normalizer of a full type $\mathrm{II}_1$ ergodic group
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 115
EP  - 136
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a7/
LA  - ru
ID  - FAA_2024_58_2_a7
ER  - 
%0 Journal Article
%A Andrei Lodkin
%A Benzion Rubshtein
%T On the conjugacy of measurable partitions with respect to the normalizer of a full type $\mathrm{II}_1$ ergodic group
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 115-136
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a7/
%G ru
%F FAA_2024_58_2_a7
Andrei Lodkin; Benzion Rubshtein. On the conjugacy of measurable partitions with respect to the normalizer of a full type $\mathrm{II}_1$ ergodic group. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 115-136. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a7/

[1] S. I. Bezuglyĭ, V. Ya. Golodets, “Transformation groups of a measure space and outer conjugacy invariants for automorphisms from normalizers of full groups of type III”, Soviet Math. Dokl., 22:2 (1980), 279–283 | MR | Zbl

[2] R. M. Belinskaya, “Partitions of Lebesgue space in trajectories defined by ergodic automorphisms”, Funct. Anal. Appl., 2:3 (1968), 190–199 | DOI | MR | Zbl

[3] A. Connes, J. Feldman, B. Weiss, “An amenable equivalence relation is generated by a single transformation”, Ergodic Theory Dynam. Systems, 1:4 (1981), 431–450 | DOI | MR | Zbl

[4] A. Connes, W. Krieger, “Measure space automorphisms, the normalizers of their full groups, and approximate finiteness”, J. Funct. Anal., 24:4 (1977), 336–352 | DOI | MR | Zbl

[5] A. M. Vershik, “Theorem on lacunary isomorphisms of monotonic sequences of partitions”, Funct. Anal. Appl., 2:3 (1968), 200–203 | DOI | MR | Zbl

[6] A. M. Vershik, “Many-valued measure-preserving mappings (polymorphisms) and Markovian operators”, J. Soviet Math., 23:3 (1983), 2243–2266 | DOI | MR | Zbl

[7] A. M. Vershik, A. L. Fedorov, “Trajectory theory”, J. Soviet Math., 38:2 (1987), 1799–1822 | DOI | MR | Zbl

[8] V. G. Vinokurov, A. L. Fedorov, “Pary izmerimykh razbienii i algebry fon Neimana”, Predelnye teoremy dlya sluchainykh protsessov i smezhnye voprosy, Fan, Tashkent, 1982, 65–72 | MR | Zbl

[9] H. A. Dye, “On groups of measure preserving transformations. I”, Amer. J. Math., 81:1 (1959), 119–159 ; “II”, Amer. J. Math., 85:4 (1963), 551–576 | DOI | MR | Zbl | DOI | MR | Zbl

[10] A. Fedorov, B.-Z. Rubshtein, “Admissible subgroups of full ergodic groups”, Ergodic Theory Dynam. Systems, 16:6 (1996), 1221–1239 | DOI | MR | Zbl

[11] J. Feldman, C. C. Moore, “Ergodic equivalence relations, cohomology, and von Neumann algebras. I”, Trans. Amer. Math. Soc., 234:2 (1977), 289–324 ; II, 325–359 | DOI | MR | Zbl | DOI | MR | Zbl

[12] T. Hamachi, M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci., 3, Keio Univ., Dep. of Math., Yokohama, 1981, 113 pp. | MR | Zbl

[13] W. Krieger, “On constructing non-*isomorphic hyperfinite factors of type III”, J. Funct. Anal., 6 (1970), 97–109 | DOI | MR | Zbl

[14] W. Krieger, “On ergodic flows and the isomorphism of factors”, Math. Ann., 223:1 (1976), 19–70 | DOI | MR | Zbl

[15] A. A. Lodkin, “Approksimatsiya dinamicheskikh sistem i spektralnaya teoriya v faktore tipa II$_1$”, Operatory matematicheskoi fiziki i beskonechnomernyi analiz, In-t matem. AN USSR, Kiev, 1979, 73–102 | MR | Zbl

[16] A. A. Lodkin, B. A. Rubshtein, “Structure and classification of factors”, J. Soviet Math., 38:2 (1987), 1773–1798 | DOI | MR | Zbl

[17] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., 1952, no. 71, Amer. Math. Soc., Providence, RI, 1952, 55 pp. | MR | MR | Zbl

[18] V. A. Rokhlin, “Metricheskaya klassifikatsiya izmerimykh funktsii”, UMN, 12:2(74) (1957), 169–174 | MR | Zbl

[19] B. A. Rubshteĭn, “On a measure-preserving trajectory isomorphism of groups of transformations with quasi-invariant measure”, Soviet Math. Dokl., 29 (1984), 705–709 | MR | Zbl

[20] B.-Z. Rubshtein, “Lacunary isomorphism of decreasing sequences of measurable partitions”, Israel J. Math., 97 (1997), 317–345 | DOI | MR | Zbl

[21] A. L. Fedorov, “Pary izmerimykh razbienii, polimorfizmy i algebry fon Neimana”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1980, no. 5, 33–39 | MR | Zbl

[22] A. L. Fedorov, “Polymorphisms and partitions of Lebesgue spaces”, Funct. Anal. Appl., 16:2 (1982), 150–152 | DOI | MR | Zbl