@article{FAA_2024_58_2_a6,
author = {Richard Kenyon and Maxim Kontsevich and Oleg Ogievetskii and Cosmin Pohoata and Will Sawin and Semen Shlosman},
title = {The miracle of integer eigenvalues},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {100--114},
year = {2024},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/}
}
TY - JOUR AU - Richard Kenyon AU - Maxim Kontsevich AU - Oleg Ogievetskii AU - Cosmin Pohoata AU - Will Sawin AU - Semen Shlosman TI - The miracle of integer eigenvalues JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2024 SP - 100 EP - 114 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/ LA - ru ID - FAA_2024_58_2_a6 ER -
%0 Journal Article %A Richard Kenyon %A Maxim Kontsevich %A Oleg Ogievetskii %A Cosmin Pohoata %A Will Sawin %A Semen Shlosman %T The miracle of integer eigenvalues %J Funkcionalʹnyj analiz i ego priloženiâ %D 2024 %P 100-114 %V 58 %N 2 %U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/ %G ru %F FAA_2024_58_2_a6
Richard Kenyon; Maxim Kontsevich; Oleg Ogievetskii; Cosmin Pohoata; Will Sawin; Semen Shlosman. The miracle of integer eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 100-114. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/
[1] P. Bidigare, P. Hanlon, D. Rockmore, “A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements”, Duke Math. J., 99:1 (1999), 135–174 | DOI | MR | Zbl
[2] K. S. Brown, “Semigroups, rings, and Markov chains”, J. Theoret. Probab., 13:3 (2000), 871–938 | DOI | MR | Zbl
[3] K. S. Brown, P. Diaconis, “Random walks and hyperplane arrangements”, Ann. Probab., 26:4 (1998), 1813–1854 | DOI | MR | Zbl
[4] G. A. Dorpalen-Barry, Cones of hyperplane arrangements, Thesis (Ph.D.), Univ. of Minnesota, 2021, 123 pp. | MR
[5] O. V. Ogievetsky, S. B. Shlosman, “Plane partitions and their pedestal polynomials”, Math. Notes, 103:5 (2018), 793–796 | DOI | DOI | MR | Zbl
[6] F. V. Saliola, “The face semigroup algebra of a hyperplane arrangement”, Canad. J. Math., 61:4 (2009), 904–929 | DOI | MR | Zbl
[7] S. Shlosman, “The Wulff construction in statistical mechanics and combinatorics”, Russian Math. Surveys, 56:4 (2001), 709–738 | DOI | DOI | MR | Zbl
[8] N. J. A. Sloane, The on-line encyclopedia of integer sequences http://www.oeis.org/
[9] R. P. Stanley, Enumerative combinatorics, v. 1, Cambridge Stud. Adv. Math., 49, 2nd ed., Cambridge Univ. Press, Cambridge, 2012, xiv+626 pp. | DOI | MR | MR | Zbl | Zbl