The miracle of integer eigenvalues
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 100-114 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For partially ordered sets $(X, \preccurlyeq)$, we consider the square matrices $M^{X}$ with rows and columns indexed by linear extensions of the partial order on $X$. Each entry $(M^{X})_{PQ}$ is a formal variable defined by a pedestal of the linear order $Q$ with respect to linear order $P$. We show that all eigenvalues of any such matrix $M^{X}$ are $\mathbb{Z}$-linear combinations of those variables.
Keywords: partially ordered set (poset), pedestal, filter, Young diagram.
@article{FAA_2024_58_2_a6,
     author = {Richard Kenyon and Maxim Kontsevich and Oleg Ogievetskii and Cosmin Pohoata and Will Sawin and Semen Shlosman},
     title = {The miracle of integer eigenvalues},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--114},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/}
}
TY  - JOUR
AU  - Richard Kenyon
AU  - Maxim Kontsevich
AU  - Oleg Ogievetskii
AU  - Cosmin Pohoata
AU  - Will Sawin
AU  - Semen Shlosman
TI  - The miracle of integer eigenvalues
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 100
EP  - 114
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/
LA  - ru
ID  - FAA_2024_58_2_a6
ER  - 
%0 Journal Article
%A Richard Kenyon
%A Maxim Kontsevich
%A Oleg Ogievetskii
%A Cosmin Pohoata
%A Will Sawin
%A Semen Shlosman
%T The miracle of integer eigenvalues
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 100-114
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/
%G ru
%F FAA_2024_58_2_a6
Richard Kenyon; Maxim Kontsevich; Oleg Ogievetskii; Cosmin Pohoata; Will Sawin; Semen Shlosman. The miracle of integer eigenvalues. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 100-114. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a6/

[1] P. Bidigare, P. Hanlon, D. Rockmore, “A combinatorial description of the spectrum for the Tsetlin library and its generalization to hyperplane arrangements”, Duke Math. J., 99:1 (1999), 135–174 | DOI | MR | Zbl

[2] K. S. Brown, “Semigroups, rings, and Markov chains”, J. Theoret. Probab., 13:3 (2000), 871–938 | DOI | MR | Zbl

[3] K. S. Brown, P. Diaconis, “Random walks and hyperplane arrangements”, Ann. Probab., 26:4 (1998), 1813–1854 | DOI | MR | Zbl

[4] G. A. Dorpalen-Barry, Cones of hyperplane arrangements, Thesis (Ph.D.), Univ. of Minnesota, 2021, 123 pp. | MR

[5] O. V. Ogievetsky, S. B. Shlosman, “Plane partitions and their pedestal polynomials”, Math. Notes, 103:5 (2018), 793–796 | DOI | DOI | MR | Zbl

[6] F. V. Saliola, “The face semigroup algebra of a hyperplane arrangement”, Canad. J. Math., 61:4 (2009), 904–929 | DOI | MR | Zbl

[7] S. Shlosman, “The Wulff construction in statistical mechanics and combinatorics”, Russian Math. Surveys, 56:4 (2001), 709–738 | DOI | DOI | MR | Zbl

[8] N. J. A. Sloane, The on-line encyclopedia of integer sequences http://www.oeis.org/

[9] R. P. Stanley, Enumerative combinatorics, v. 1, Cambridge Stud. Adv. Math., 49, 2nd ed., Cambridge Univ. Press, Cambridge, 2012, xiv+626 pp. | DOI | MR | MR | Zbl | Zbl