@article{FAA_2024_58_2_a5,
author = {Vadim Kaimanovich},
title = {Liouville property and poisson boundary of random walks with~infinite entropy: what's amiss?},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {72--99},
year = {2024},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a5/}
}
TY - JOUR AU - Vadim Kaimanovich TI - Liouville property and poisson boundary of random walks with infinite entropy: what's amiss? JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2024 SP - 72 EP - 99 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a5/ LA - ru ID - FAA_2024_58_2_a5 ER -
Vadim Kaimanovich. Liouville property and poisson boundary of random walks with infinite entropy: what's amiss?. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 72-99. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a5/
[1] G. M. Adelson-Velskii, Yu. A. Shreider, “Banakhovo srednee na gruppakh”, UMN, 12:6(78) (1957), 131–136 | MR | Zbl
[2] A. M. Vershik, “Schetnye gruppy, blizkie k konechnym”, F. Grinlif, Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1973, 112–135 | Zbl
[3] A. M. Vershik, “Dynamic theory of growth in groups: entropy, boundaries, examples”, Russian Math. Surveys, 55:4 (2000), 667–733 | DOI | DOI | MR | Zbl
[4] A. M. Vershik, “Informatsiya, entropiya, dinamika”, Matematika XX veka. Vzglyad iz Peterburga, MTsNMO, M., 2010, 47–76
[5] A. M. Vershik, “The history of V. A. Rokhlin's ergodic seminar (1960–1970)”, J. Math. Sci. (N.Y.), 255:2 (2021), 175–183 | DOI | MR | Zbl
[6] A. M. Vershik, V. A. Kaimanovich, “Random walks on groups: boundary, entropy, uniform distribution”, Soviet Math. Dokl., 20:6 (1979), 1170–1173 | MR | Zbl
[7] V. A. Kaimanovich, “Examples of noncommutative groups with nontrivial exit-boundary”, J. Soviet Math., 28 (1985), 579–591 | DOI | MR | Zbl
[8] S. A. Molchanov, “On Martin boundaries for the direct product of Markov chains”, Theory Probab. Appl., 12:2 (1967), 307–310 | DOI | MR | Zbl
[9] M. Plank, “Vozniknovenie i postepennoe razvitie teorii kvant”, Izbrannye trudy, Nauka, M., 1975, 603–612
[10] V. A. Rokhlin, “Lectures on the entropy theory of measure-preserving transformations”, Russian Math. Surveys, 22:5 (1967), 1–52 | DOI | MR | Zbl
[11] L. V. Ahlfors, “Development of the theory of conformal mapping and Riemann surfaces through a century”, Contributions to the theory of Riemann surfaces, Ann. of Math. Stud., 30, Princeton Univ. Press, Princeton, NJ, 1953, 3–13 | DOI | MR | Zbl
[12] A. Alpeev, Examples of measures with trivial left and non-trivial right random walk tail boundary, arXiv: 2105.11359
[13] A. Alpeev, “Secret sharing on the Poisson–Furstenberg boundary” (to appear)
[14] A. Avez, “Entropie des groupes de type fini”, C. R. Acad. Sci. Paris Sér. A-B, 275 (1972), A1363–A1366 | MR | Zbl
[15] L. Boltzmann, “Über die Beziehung zwischen dem zweiten Hauptsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht”, Wissenschaftliche Abhandlungen, v. 2, Camb. Libr. Collect. Phys. Sci., Reprint of the 1909 ed., Cambridge Univ. Press, Cambridge, 2012, 164–223 | DOI | MR | MR | Zbl
[16] L. Boltzmann, “Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen”, Wissenschaftliche Abhandlungen, v. 1, Camb. Libr. Collect. Phys. Sci., Reprint of the 1909 ed., Cambridge Univ. Press, Cambridge, 2012, 316–402 | DOI | MR | MR | Zbl
[17] U. Bottazzini, The higher calculus: a history of real and complex analysis from Euler to Weierstrass, Springer-Verlag, New York, 1986, vi+332 pp. | MR | Zbl
[18] U. Bottazzini, J. Gray, Hidden harmony – geometric fantasies. The rise of complex function theory, Sources Stud. Hist. Math. Phys. Sci., Springer, New York, 2013, xviii+848 pp. | DOI | MR | Zbl
[19] S. Brofferio, B. Schapira, “Poisson boundary of $GL_d(\mathbb Q)$”, Israel J. Math., 185 (2011), 125–140 | DOI | MR | Zbl
[20] K. Chawla, B. Forghani, J. Frisch, G. Tiozzo, The Poisson boundary of hyperbolic groups without moment conditions, arXiv: 2209.02114
[21] Y. Derriennic, “Quelques applications du théorème ergodique sous-additif”, Conference on random walks (Kleebach, 1979), Astérisque, 74, Soc. Math. France, Paris, 1980, 183–201 | MR | Zbl
[22] A. Erschler, “Poisson–Furstenberg boundaries, large-scale geometry and growth of groups”, Proceedings of the international congress of mathematicians (Hyderabad, 2010), v. II, Hindustan Book Agency, New Delhi, 2011, 681–704 | DOI | MR | Zbl
[23] A. Erschler, J. Frisch, Poisson boundary of group extensions, arXiv: 2206.11111
[24] A. Erschler, V. A. Kaimanovich, “Arboreal structures on groups and the associated boundaries”, Geom. Funct. Anal., 33:3 (2023), 694–748 | DOI | MR | Zbl
[25] B. Forghani, V. A. Kaimanovich, “Boundary preserving transformations of random walks” (to appear)
[26] J. Frisch, Y. Hartman, O. Tamuz, P. V. Ferdowsi, “Choquet–Deny groups and the infinite conjugacy class property”, Ann. of Math. (2), 190:1 (2019), 307–320 | DOI | MR | Zbl
[27] J. Frisch, E. Silva, The Poisson boundary of wreath products, arXiv: 2310.10160
[28] A. Furman, “Random walks on groups and random transformations”, Handbook of dynamical systems, v. 1A, North-Holland, Amsterdam, 2002, 931–1014 | DOI | MR | Zbl
[29] H. Furstenberg, “Noncommuting random products”, Trans. Amer. Math. Soc., 108 (1963), 377–428 | DOI | MR | Zbl
[30] H. Furstenberg, E. Glasner, “Stationary dynamical systems”, Dynamical numbers – interplay between dynamical systems and number theory, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010, 1–28 | DOI | MR | Zbl
[31] J. W. Gibbs, Elementary principles in statistical mechanics. Developed with especial reference to the rational foundation of thermodynamics, Camb. Libr. Collect. Math., Reprint of the 1902 ed., Cambridge Univ. Press, Cambridge, 2010, xviii+207 pp. | DOI | MR | Zbl
[32] S. Goldstein, J. L. Lebowitz, R. Tumulka, N. Zanghì, “Gibbs and Boltzmann entropy in classical and quantum mechanics”, Statistical mechanics and scientific explanation, World Sci. Publ., Singapore, 2020, 519–581 | DOI
[33] R. I. Grigorchuk, V. A. Kaimanovich, “Random walks on product groups and self-similarity” (to appear)
[34] P. Hall, “Finiteness conditions for soluble groups”, Proc. London Math. Soc. (3), 4 (1954), 419–436 | DOI | MR | Zbl
[35] J. Hopfensperger, “Counting topologically invariant means on $L_\infty(G)$ and $VN(G)$ with ultrafilters”, Rocky Mountain J. Math., 50:6 (2020), 2103–2115 | DOI | MR | Zbl
[36] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl
[37] V. A. Kaĭmanovich, “Boundary and entropy of random walks in random environment”, Probability theory and mathematical statistics (Vilnius, 1989), v. I, Mokslas, Vilnius, 1990, 573–579 | MR | Zbl
[38] V. A. Kaimanovich, “Poisson boundaries of random walks on discrete solvable groups”, Probability measures on groups (Oberwolfach, 1990), v. X, Plenum Press, New York, 1991, 205–238 | DOI | MR | Zbl
[39] V. A. Kaimanovich, “Measure-theoretic boundaries of Markov chains, 0–2 laws and entropy”, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum Press, New York, 1992, 145–180 | DOI | MR
[40] V. A. Kaimanovich, “The Poisson formula for groups with hyperbolic properties”, Ann. of Math. (2), 152:3 (2000), 659–692 | DOI | MR | Zbl
[41] V. A. Kaimanovich, “Amenability and the Liouville property”, Israel J. Math., 149 (2005), 45–85 | DOI | MR | Zbl
[42] V. A. Kaimanovich, A. Fisher, “A Poisson formula for harmonic projections”, Ann. Inst. H. Poincaré Probab. Statist., 34:2 (1998), 209–216 | DOI | MR | Zbl
[43] V. A. Kaimanovich, F. Sobieczky, “Random walks on random horospheric products”, Dynamical systems and group actions, Contemp. Math., 567, Amer. Math. Soc., Providence, RI, 2012, 163–183 | DOI | MR | Zbl
[44] J. Lützen, Joseph Liouville 1809–1882: master of pure and applied mathematics, Stud. Hist. Math. Phys. Sci., 15, Springer-Verlag, New York, 1990, xx+884 pp. | DOI | MR | Zbl
[45] R. Lyons, R. Pemantle, Y. Peres, “Random walks on the lamplighter group”, Ann. Probab., 24:4 (1996), 1993–2006 | DOI | MR | Zbl
[46] P. Milnes, “Amenable groups for which every topologically left invariant mean is right invariant”, Rocky Mountain J. Math., 11:2 (1981), 261–266 | DOI | MR | Zbl
[47] A. L. T. Paterson, “Amenable groups for which every topological left invariant mean is invariant”, Pacific J. Math., 84:2 (1979), 391–397 | DOI | MR | Zbl
[48] M. A. Picardello, W. Woess, “Martin boundaries of Cartesian products of Markov chains”, Nagoya Math. J., 128 (1992), 153–169 | DOI | MR | Zbl
[49] M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, 2. Aufl., J. A. Barth, Leipzig, 1913, xii+206 pp. | Zbl
[50] O. Rioul, “This is IT: a primer on {S}hannon's entropy and information”, Information theory–Poincaré seminar 2018, Prog. Math. Phys., 78, Birkhäuser/Springer, Cham, 2021, 49–86 | DOI | MR
[51] J. Rosenblatt, “Ergodic and mixing random walks on locally compact groups”, Math. Ann., 257:1 (1981), 31–42 | DOI | MR | Zbl
[52] J. Rosenblatt, M. Talagrand, “Different types of invariant means”, J. London Math. Soc. (2), 24:3 (1981), 525–532 | DOI | MR | Zbl
[53] C. E. Shannon, “A mathematical theory of communication”, Bell System Tech. J., 27:3, 4 (1948), 379–423, 623–656 | DOI | DOI | MR | Zbl
[54] J. von Neumann, “Thermodynamik quantenmechanischer Gesamtheiten”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1927 (1927), 276–291 | Zbl
[55] C. Wells, “Some applications of the wreath product construction”, Amer. Math. Monthly, 83:5 (1976), 317–338 | DOI | MR | Zbl
[56] T. Zheng, “Asymptotic behaviors of random walks on countable groups”, ICM–International congress of mathematicians, v. IV, Sections 5–8, EMS Press, Berlin, 2023, 3340–3365 | MR