Elliptic analogue of the Vershik–Kerov limit shape
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 52-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review the limit shape problem for the Plancherel measure and its generalizations found in supersymmetric gauge theory instanton count. We focus on the measure, interpolating between the Plancherel measure and the uniform measure, a $U(1)$ case of $\mathcal{N}=2^{*}$ gauge theory. We give the formula for its limit shape in terms of elliptic functions, generalizing the trigonometric “arcsin” law of Vershik–Kerov and Logan–Schepp.
Keywords: limit measures, limit shape, spectral curves, enumerative geometry.
Mots-clés : instantons
@article{FAA_2024_58_2_a4,
     author = {Andrei Grekov and Nikita Nekrasov},
     title = {Elliptic analogue of the {Vershik{\textendash}Kerov} limit shape},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--71},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/}
}
TY  - JOUR
AU  - Andrei Grekov
AU  - Nikita Nekrasov
TI  - Elliptic analogue of the Vershik–Kerov limit shape
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 52
EP  - 71
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/
LA  - ru
ID  - FAA_2024_58_2_a4
ER  - 
%0 Journal Article
%A Andrei Grekov
%A Nikita Nekrasov
%T Elliptic analogue of the Vershik–Kerov limit shape
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 52-71
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/
%G ru
%F FAA_2024_58_2_a4
Andrei Grekov; Nikita Nekrasov. Elliptic analogue of the Vershik–Kerov limit shape. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 52-71. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/

[1] A. Borodin, G. Olshanski, “$Z$-measures on partitions and their scaling limits”, European J. Combin., 26:6 (2005), 795–834 | DOI | MR | Zbl

[2] E. Dimitrov, A. Knizel, “Asymptotics of discrete $\beta$-corners processes via two-level discrete loop equations”, Probab. Math. Phys., 3:2 (2022), 247–342 | DOI | MR | Zbl

[3] R. Donagi, E. Witten, “Supersymmetric Yang–Mills theory and integrable systems”, Nuclear Phys. B, 460:2 (1996), 299–334 | DOI | MR | Zbl

[4] A. Grekov, N. Nekrasov, Elliptic Calogero–Moser system, crossed and folded instantons, and bilinear identities, arXiv: 2310.04571

[5] A. Grekov, N. Nekrasov, “Vershik–Kerov in higher times and higher spaces” (to appear)

[6] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Soviet Math. Dokl., 18 (1977), 527–531 | MR | Zbl

[7] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl

[8] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR | Zbl

[9] A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, arXiv: hep-th/0302191

[10] A. Marshakov, N. A. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy”, J. High Energy Phys., 2007:1 (2007), 104, 39 pp. | DOI | MR

[11] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The unity of mathematics. In honor of the ninetieth birthday of I. M. Gelfand, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 525–596 | DOI | MR | Zbl

[12] N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 | DOI | MR | Zbl

[13] N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp. | DOI | Zbl

[14] N. Nekrasov, V. Pestun, Seiberg–Witten geometry of four-dimensional $\mathcal{N}=2$ quiver gauge theories, arXiv: 1211.2240v2

[15] A. Okounkov, R. Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, arXiv: math/0204305

[16] C. Vafa, E. Witten, “A strong coupling test of $S$-duality”, Nuclear Phys. B, 431:1-2 (1994), 3–77 | DOI | MR | Zbl