Mots-clés : instantons
@article{FAA_2024_58_2_a4,
author = {Andrei Grekov and Nikita Nekrasov},
title = {Elliptic analogue of the {Vershik{\textendash}Kerov} limit shape},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {52--71},
year = {2024},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/}
}
Andrei Grekov; Nikita Nekrasov. Elliptic analogue of the Vershik–Kerov limit shape. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 52-71. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a4/
[1] A. Borodin, G. Olshanski, “$Z$-measures on partitions and their scaling limits”, European J. Combin., 26:6 (2005), 795–834 | DOI | MR | Zbl
[2] E. Dimitrov, A. Knizel, “Asymptotics of discrete $\beta$-corners processes via two-level discrete loop equations”, Probab. Math. Phys., 3:2 (2022), 247–342 | DOI | MR | Zbl
[3] R. Donagi, E. Witten, “Supersymmetric Yang–Mills theory and integrable systems”, Nuclear Phys. B, 460:2 (1996), 299–334 | DOI | MR | Zbl
[4] A. Grekov, N. Nekrasov, Elliptic Calogero–Moser system, crossed and folded instantons, and bilinear identities, arXiv: 2310.04571
[5] A. Grekov, N. Nekrasov, “Vershik–Kerov in higher times and higher spaces” (to appear)
[6] A. M. Vershik, S. V. Kerov, “Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux”, Soviet Math. Dokl., 18 (1977), 527–531 | MR | Zbl
[7] I. M. Krichever, “The $\tau$-function of the universal Whitham hierarchy, matrix models and topological field theories”, Comm. Pure Appl. Math., 47:4 (1994), 437–475 | DOI | MR | Zbl
[8] B. F. Logan, L. A. Shepp, “A variational problem for random Young tableaux”, Adv. Math., 26:2 (1977), 206–222 | DOI | MR | Zbl
[9] A. S. Losev, A. Marshakov, N. A. Nekrasov, Small instantons, little strings and free fermions, arXiv: hep-th/0302191
[10] A. Marshakov, N. A. Nekrasov, “Extended Seiberg–Witten theory and integrable hierarchy”, J. High Energy Phys., 2007:1 (2007), 104, 39 pp. | DOI | MR
[11] N. A. Nekrasov, A. Okounkov, “Seiberg–Witten theory and random partitions”, The unity of mathematics. In honor of the ninetieth birthday of I. M. Gelfand, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 525–596 | DOI | MR | Zbl
[12] N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 | DOI | MR | Zbl
[13] N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, J. High Energy Phys., 2016:3 (2016), 181, 70 pp. | DOI | Zbl
[14] N. Nekrasov, V. Pestun, Seiberg–Witten geometry of four-dimensional $\mathcal{N}=2$ quiver gauge theories, arXiv: 1211.2240v2
[15] A. Okounkov, R. Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, arXiv: math/0204305
[16] C. Vafa, E. Witten, “A strong coupling test of $S$-duality”, Nuclear Phys. B, 431:1-2 (1994), 3–77 | DOI | MR | Zbl