Golden and silver stationary points in probe particle dynamics within a modular domain
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 34-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The flows generated by the iterative dynamics of triangle reflections are analyzed. These flows are interpreted as the adiabatic dynamics of probe particles within the fundamental domain of the modular group. Two specific cases of lattices are considered: (a) those generated by reflections of equilateral triangles, and (b) those generated by reflections of rectangular isosceles triangles. We demonstrate that the stationary points of the flows for equilateral and isosceles triangles correspond to the “Golden” and the “Silver” ratios, respectively.
Keywords: golden and silver ratios, modular group, euclidean plane tiling, elliptic functions, adiabatic dynamics
Mots-clés : phyllotaxis.
@article{FAA_2024_58_2_a3,
     author = {Aleksandr Gorsky and Sergei Nechaev},
     title = {Golden and silver stationary points in probe particle dynamics within a~modular domain},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--51},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/}
}
TY  - JOUR
AU  - Aleksandr Gorsky
AU  - Sergei Nechaev
TI  - Golden and silver stationary points in probe particle dynamics within a modular domain
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 34
EP  - 51
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/
LA  - ru
ID  - FAA_2024_58_2_a3
ER  - 
%0 Journal Article
%A Aleksandr Gorsky
%A Sergei Nechaev
%T Golden and silver stationary points in probe particle dynamics within a modular domain
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 34-51
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/
%G ru
%F FAA_2024_58_2_a3
Aleksandr Gorsky; Sergei Nechaev. Golden and silver stationary points in probe particle dynamics within a modular domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 34-51. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/

[1] F. Rothen, A.-J. Koch, “Phyllotaxis, or the properties of spiral lattices. I. Shape invariance under compression”, J. Physique, 50:6 (1989), 633–657 | DOI | MR

[2] F. Rothen, A.-J. Koch, “Phyllotaxis or the properties of spiral lattices. II. Packing of circles along logarithmic spirals”, J. Physique, 50:13 (1989), 1603–1621 | DOI | MR

[3] M. Kunz, F. Rothen, “Phyllotaxis or the properties of spiral lattices. III. An algebraic model of morphogenesis”, J. Physique I, 2:11 (1992), 2131–2172 | DOI

[4] Hyun-Woo Lee, L. S. Levitov, “Universality in phyllotaxis: a mechanical theory”, Symmetry in plants, Ser. Math. Biol. Med., 4, World Sci. Publ., Singapore, 1998, 619–653 | DOI | Zbl

[5] V. W. de Spinadel, “The metallic means family and multifractal spectra”, Nonlinear Anal., 36, Ser. B: Real World Appl.:6 (1999), 721–745 | DOI | MR | Zbl

[6] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Classics Math., Reprint of the 1974 ed., Springer-Verlag, Berlin, 1996, xv+323 pp. | DOI | MR | Zbl | Zbl

[7] E. Helfand, D. S. Pearson, “Statistics of the entanglement of polymers: unentangled loops and primitive paths”, J. Chem. Phys., 79:4 (1983), 2054–2059 | DOI

[8] S. K. Nechaev, “Topological properties of a two-dimensional polymer chain in the lattice of obstacles”, J. Phys. A, 21:18 (1988), 3659–3671 | DOI | MR | Zbl

[9] S. Nechaev, K. Polovnikov, “From geometric optics to plants: the eikonal equation for buckling”, Soft Matter, 13:7 (2017), 1420–1429 | DOI

[10] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR

[11] L. S. Levitov, “Energetic approach to phyllotaxis”, Europhys. Lett., 14:6 (1991), 533–539 | DOI

[12] M. Livio, The golden ratio. The story of phi, the world's most astonishing number, Reprint of 2002 ed., Broadway Books, New York, 2008, x+294 pp. | MR | Zbl

[13] O. R. Musin, A. S. Tarasov, “The Tammes problem for $N=14$”, Exp. Math., 24:4 (2015), 460–468 | DOI | MR | Zbl

[14] E. L. Altschuler, T. J. Williams, E. R. Ratner, R. Tipton, R. Stong, F. Dowla, F. Wooten, “Possible global minimum lattice configurations for Thomson's problem of charges on a sphere”, Phys. Rev. Lett., 78:14 (1997), 2681–2685 | DOI

[15] A. A. Abrikosov, “The magnetic properties of superconducting alloys”, J. Phys. Chem. Solids, 2:3 (1957), 199–208 | DOI

[16] A. Flack, A. Gorsky, S. Nechaev, “Generalized Devil's staircase and RG flows”, Nuclear Phys. B, 996 (2023), 116376, 44 pp. | DOI | MR | Zbl

[17] C. O'Sullivan, “Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers”, Res. Number Theory, 4:3 (2018), 36, 38 pp. | DOI | MR | Zbl

[18] P. Ribeiro, S. Yakubovich, “On the Epstein zeta function and the zeros of a class of Dirichlet series”, J. Math. Anal. Appl., 530:1 (2024), 127590 | DOI | MR | Zbl

[19] C. L. Siegel, Lectures on advanced analytic number theory, Notes by S. Raghavan, Tata Inst. Fundam. Res. Lect. Math., 23, Tata Inst. Fund. Res., Bombay, 1965, iii+331+iii pp. | MR | Zbl

[20] Y. Motohashi, “A new proof of the limit formula of Kronecker”, Proc. Japan Acad., 44:7 (1968), 614–616 | DOI | MR | Zbl

[21] L. S. Levitov, “Phyllotaxis of flux lattices in layered superconductors”, Phys. Rev. Lett., 66:2 (1991), 224–227 | DOI | MR | Zbl

[22] S. Gukov, “RG flows and bifurcations”, Nuclear Phys. B, 919 (2017), 583–638 | DOI | MR | Zbl

[23] A. Flack, S. Nechaev, BKT in phyllotaxis, arXiv: 2310.05580

[24] T. Koshy, Fibonacci and Lucas numbers with applications, v. 2, Pure Appl. Math. (Hoboken), John Wiley Sons, Inc., Hoboken, NJ, 2019, xviii+729 pp. | DOI | MR | Zbl

[25] A. P. Akande, R. Schneider, “Semi-modular forms from Fibonacci–Eisenstein series”, Ramanujan J., 60:1 (2023), 59–68 | DOI | MR | Zbl

[26] E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, “Torus knots and the rational DAHA”, Duke Math. J., 163:14 (2014), 2709–2794 | DOI | MR | Zbl

[27] K. Taşköprü, I. Altintaş, “HOMFLY polynomials of torus links as generalized Fibonacci polynomials”, Electron. J. Combin., 22:4 (2015), 4.8, 17 pp. | DOI | MR | Zbl