Mots-clés : phyllotaxis.
@article{FAA_2024_58_2_a3,
author = {Aleksandr Gorsky and Sergei Nechaev},
title = {Golden and silver stationary points in probe particle dynamics within a~modular domain},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {34--51},
year = {2024},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/}
}
TY - JOUR AU - Aleksandr Gorsky AU - Sergei Nechaev TI - Golden and silver stationary points in probe particle dynamics within a modular domain JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2024 SP - 34 EP - 51 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/ LA - ru ID - FAA_2024_58_2_a3 ER -
Aleksandr Gorsky; Sergei Nechaev. Golden and silver stationary points in probe particle dynamics within a modular domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 34-51. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a3/
[1] F. Rothen, A.-J. Koch, “Phyllotaxis, or the properties of spiral lattices. I. Shape invariance under compression”, J. Physique, 50:6 (1989), 633–657 | DOI | MR
[2] F. Rothen, A.-J. Koch, “Phyllotaxis or the properties of spiral lattices. II. Packing of circles along logarithmic spirals”, J. Physique, 50:13 (1989), 1603–1621 | DOI | MR
[3] M. Kunz, F. Rothen, “Phyllotaxis or the properties of spiral lattices. III. An algebraic model of morphogenesis”, J. Physique I, 2:11 (1992), 2131–2172 | DOI
[4] Hyun-Woo Lee, L. S. Levitov, “Universality in phyllotaxis: a mechanical theory”, Symmetry in plants, Ser. Math. Biol. Med., 4, World Sci. Publ., Singapore, 1998, 619–653 | DOI | Zbl
[5] V. W. de Spinadel, “The metallic means family and multifractal spectra”, Nonlinear Anal., 36, Ser. B: Real World Appl.:6 (1999), 721–745 | DOI | MR | Zbl
[6] K. Itô, H. P. McKean, Jr., Diffusion processes and their sample paths, Classics Math., Reprint of the 1974 ed., Springer-Verlag, Berlin, 1996, xv+323 pp. | DOI | MR | Zbl | Zbl
[7] E. Helfand, D. S. Pearson, “Statistics of the entanglement of polymers: unentangled loops and primitive paths”, J. Chem. Phys., 79:4 (1983), 2054–2059 | DOI
[8] S. K. Nechaev, “Topological properties of a two-dimensional polymer chain in the lattice of obstacles”, J. Phys. A, 21:18 (1988), 3659–3671 | DOI | MR | Zbl
[9] S. Nechaev, K. Polovnikov, “From geometric optics to plants: the eikonal equation for buckling”, Soft Matter, 13:7 (2017), 1420–1429 | DOI
[10] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR
[11] L. S. Levitov, “Energetic approach to phyllotaxis”, Europhys. Lett., 14:6 (1991), 533–539 | DOI
[12] M. Livio, The golden ratio. The story of phi, the world's most astonishing number, Reprint of 2002 ed., Broadway Books, New York, 2008, x+294 pp. | MR | Zbl
[13] O. R. Musin, A. S. Tarasov, “The Tammes problem for $N=14$”, Exp. Math., 24:4 (2015), 460–468 | DOI | MR | Zbl
[14] E. L. Altschuler, T. J. Williams, E. R. Ratner, R. Tipton, R. Stong, F. Dowla, F. Wooten, “Possible global minimum lattice configurations for Thomson's problem of charges on a sphere”, Phys. Rev. Lett., 78:14 (1997), 2681–2685 | DOI
[15] A. A. Abrikosov, “The magnetic properties of superconducting alloys”, J. Phys. Chem. Solids, 2:3 (1957), 199–208 | DOI
[16] A. Flack, A. Gorsky, S. Nechaev, “Generalized Devil's staircase and RG flows”, Nuclear Phys. B, 996 (2023), 116376, 44 pp. | DOI | MR | Zbl
[17] C. O'Sullivan, “Formulas for non-holomorphic Eisenstein series and for the Riemann zeta function at odd integers”, Res. Number Theory, 4:3 (2018), 36, 38 pp. | DOI | MR | Zbl
[18] P. Ribeiro, S. Yakubovich, “On the Epstein zeta function and the zeros of a class of Dirichlet series”, J. Math. Anal. Appl., 530:1 (2024), 127590 | DOI | MR | Zbl
[19] C. L. Siegel, Lectures on advanced analytic number theory, Notes by S. Raghavan, Tata Inst. Fundam. Res. Lect. Math., 23, Tata Inst. Fund. Res., Bombay, 1965, iii+331+iii pp. | MR | Zbl
[20] Y. Motohashi, “A new proof of the limit formula of Kronecker”, Proc. Japan Acad., 44:7 (1968), 614–616 | DOI | MR | Zbl
[21] L. S. Levitov, “Phyllotaxis of flux lattices in layered superconductors”, Phys. Rev. Lett., 66:2 (1991), 224–227 | DOI | MR | Zbl
[22] S. Gukov, “RG flows and bifurcations”, Nuclear Phys. B, 919 (2017), 583–638 | DOI | MR | Zbl
[23] A. Flack, S. Nechaev, BKT in phyllotaxis, arXiv: 2310.05580
[24] T. Koshy, Fibonacci and Lucas numbers with applications, v. 2, Pure Appl. Math. (Hoboken), John Wiley Sons, Inc., Hoboken, NJ, 2019, xviii+729 pp. | DOI | MR | Zbl
[25] A. P. Akande, R. Schneider, “Semi-modular forms from Fibonacci–Eisenstein series”, Ramanujan J., 60:1 (2023), 59–68 | DOI | MR | Zbl
[26] E. Gorsky, A. Oblomkov, J. Rasmussen, V. Shende, “Torus knots and the rational DAHA”, Duke Math. J., 163:14 (2014), 2709–2794 | DOI | MR | Zbl
[27] K. Taşköprü, I. Altintaş, “HOMFLY polynomials of torus links as generalized Fibonacci polynomials”, Electron. J. Combin., 22:4 (2015), 4.8, 17 pp. | DOI | MR | Zbl