Keywords: cost function, Kantorovich problem.
@article{FAA_2024_58_2_a1,
author = {Konstantin Afonin},
title = {Duality for the {Kantorovich} problem with a~fixed barycenter and barycenters of functionals},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {5--22},
year = {2024},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/}
}
TY - JOUR AU - Konstantin Afonin TI - Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2024 SP - 5 EP - 22 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/ LA - ru ID - FAA_2024_58_2_a1 ER -
Konstantin Afonin. Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 5-22. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/
[1] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR | Zbl
[2] K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612 | DOI | MR | Zbl
[3] L. Ambrosio, E. Brué, D. Semola, Lectures on optimal transport, Unitext, 130, La Mat. per il 3+2, Springer, Cham, 2021, ix+250 pp. | DOI | MR | Zbl
[4] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR | Zbl
[5] K. A. Afonin, “Nelineinaya zadacha Kantorovicha optimalnoi transportirovki mer s nevypuklymi funktsiyami stoimosti”, Funkts. analiz i ego pril., 57:4 (2023), 3–16 | DOI
[6] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp. | DOI | MR | Zbl
[7] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl
[8] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl
[9] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[10] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | DOI | MR | Zbl
[11] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl
[12] V. I. Bogachev, S. N. Popova, “On Radon barycenters of measures on spaces of measures”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 19–30 | MR | Zbl
[13] V. I. Bogachev, S. N. Popova, A. V. Rezbayev, “On nonlinear Kantorovich problems with density constraints”, Moscow Math. J., 23:3 (2023), 285–307 | DOI | MR | Zbl
[14] R. Engelking, General topology, Transl. from the Polish, Sigma Ser. Pure Math., 6, 2nd ed., Hendermann Verlag, Berlin, 1989, viii+529 pp. | MR | Zbl
[15] A. Figalli, F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp. | DOI | MR | Zbl
[16] B. S. Mordukhovich, Nguyen Mau Nam, Convex analysis and beyond, v. I, Springer Ser. Oper. Res. Financ. Eng., Basic theory, Springer, Cham, 2022, xvii+585 pp. | DOI | MR | Zbl
[17] J. Pachl, Uniform spaces and measures, Fields Inst. Monogr., 30, Springer, New York; Fields Inst. Res. Math. Sci., Toronto, ON, 2013, x+209 pp. | DOI | MR | Zbl
[18] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp. | DOI | MR | Zbl
[19] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp. | DOI | MR | Zbl