Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the study of duality in the linear Kantorovich problem with a fixed barycenter. It is proved that Kantorovich duality holds for general lower semicontinuous cost functions on completely regular spaces. In the course of considering this subject, the question of representation of a continuous linear functional by a Radon measure is raised and solved, provided that the barycenter of the functional is given by a Radon measure. In addition, we consider two new barycentric optimization problems and prove duality results for them.
Mots-clés : barycenter
Keywords: cost function, Kantorovich problem.
@article{FAA_2024_58_2_a1,
     author = {Konstantin Afonin},
     title = {Duality for the {Kantorovich} problem with a~fixed barycenter and barycenters of functionals},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {5--22},
     year = {2024},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/}
}
TY  - JOUR
AU  - Konstantin Afonin
TI  - Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 5
EP  - 22
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/
LA  - ru
ID  - FAA_2024_58_2_a1
ER  - 
%0 Journal Article
%A Konstantin Afonin
%T Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 5-22
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/
%G ru
%F FAA_2024_58_2_a1
Konstantin Afonin. Duality for the Kantorovich problem with a fixed barycenter and barycenters of functionals. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 2, pp. 5-22. http://geodesic.mathdoc.fr/item/FAA_2024_58_2_a1/

[1] B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453 | DOI | MR | Zbl

[2] K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal., 22:2 (2023), 597–612 | DOI | MR | Zbl

[3] L. Ambrosio, E. Brué, D. Semola, Lectures on optimal transport, Unitext, 130, La Mat. per il 3+2, Springer, Cham, 2021, ix+250 pp. | DOI | MR | Zbl

[4] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR | Zbl

[5] K. A. Afonin, “Nelineinaya zadacha Kantorovicha optimalnoi transportirovki mer s nevypuklymi funktsiyami stoimosti”, Funkts. analiz i ego pril., 57:4 (2023), 3–16 | DOI

[6] J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp. | DOI | MR | Zbl

[7] J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394 | DOI | MR | Zbl

[8] V. I. Bogachev, Measure theory, v. I, II, Springer-Verlag, Berlin, 2007, xviii+500 pp., xiv+575 pp. | DOI | MR | Zbl

[9] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl

[10] V. I. Bogachev, “Kantorovich problem of optimal transportation of measures: new directions of research”, Russian Math. Surveys, 77:5 (2022), 769–817 | DOI | DOI | MR | Zbl

[11] V. I. Bogachev, A. V. Kolesnikov, “The Monge–Kantorovich problem: achievements, connections, and perspectives”, Russian Math. Surveys, 67:5 (2012), 785–890 | DOI | DOI | MR | Zbl

[12] V. I. Bogachev, S. N. Popova, “On Radon barycenters of measures on spaces of measures”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 19–30 | MR | Zbl

[13] V. I. Bogachev, S. N. Popova, A. V. Rezbayev, “On nonlinear Kantorovich problems with density constraints”, Moscow Math. J., 23:3 (2023), 285–307 | DOI | MR | Zbl

[14] R. Engelking, General topology, Transl. from the Polish, Sigma Ser. Pure Math., 6, 2nd ed., Hendermann Verlag, Berlin, 1989, viii+529 pp. | MR | Zbl

[15] A. Figalli, F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp. | DOI | MR | Zbl

[16] B. S. Mordukhovich, Nguyen Mau Nam, Convex analysis and beyond, v. I, Springer Ser. Oper. Res. Financ. Eng., Basic theory, Springer, Cham, 2022, xvii+585 pp. | DOI | MR | Zbl

[17] J. Pachl, Uniform spaces and measures, Fields Inst. Monogr., 30, Springer, New York; Fields Inst. Res. Math. Sci., Toronto, ON, 2013, x+209 pp. | DOI | MR | Zbl

[18] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp. | DOI | MR | Zbl

[19] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer, New York, 2009, xxii+973 pp. | DOI | MR | Zbl