Interior points of convex compactа and continuous choice of exact measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 125-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a metric space $M$ we prove existence of continuous maps $\{M_n\}^{\infty}_{n=1}$ associating to a compact subset $K \subset M$ a probability measure $M_n(K)$ with $\operatorname{supp}(M_n(K)) = K$ in such a way that the set $\{M_n(K)\}^{\infty}_{n=1}$ is dense in the space of probability measures on $K$.
Keywords: Probability measures, exact measures, interior points of convex sets, continuous selections.
@article{FAA_2024_58_1_a8,
     author = {Pavel Semenov},
     title = {Interior points of convex compact{\cyra} and continuous choice of exact measures},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {125--131},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/}
}
TY  - JOUR
AU  - Pavel Semenov
TI  - Interior points of convex compactа and continuous choice of exact measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 125
EP  - 131
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/
LA  - ru
ID  - FAA_2024_58_1_a8
ER  - 
%0 Journal Article
%A Pavel Semenov
%T Interior points of convex compactа and continuous choice of exact measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 125-131
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/
%G ru
%F FAA_2024_58_1_a8
Pavel Semenov. Interior points of convex compactа and continuous choice of exact measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 125-131. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/

[1] S. Ageev, E. D. Tymchatyn, “On exact atomless Milutin maps”, Topology Appl., 153:2–3 (2005), 227–238 | DOI | MR | Zbl

[2] V. I. Bogachev, O. G. Smolyanov, Topological Vector Spaces and Their Applications, Springer Monograph in Mathematics, Springer, Cham, 2017 | DOI | MR | Zbl

[3] R. Diaz Millan, V. Roshchina, “The intrinsic core and minimal faces of convex sets in general vector spaces”, Set-Valued Var. Anal., 31:2 (2023), 14 ; arXiv: 2107.07730 | DOI | MR | Zbl

[4] L. Dubins, “On extreme points of convex sets”, J. Math. Anal. Appl., 5 (1962), 237–244 | DOI | MR | Zbl

[5] V. Klee, “Convex sets in linear spaces”, Duke Math. J., 18:2 (1951), 443–466 | MR | Zbl

[6] E. Michael, “Continuous selections, I”, Ann. of Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[7] E. Michael, “Dense families of continuous selections”, Fund. Math., 47 (1959), 173–178 | DOI | MR | Zbl

[8] K. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, London, 1967 | MR | Zbl

[9] D. Repovš, P. Semenov, E. Shchepin, “On exact Milyutin mappings”, Topology Appl., 81:3 (1997), 197–205 | DOI | MR | Zbl

[10] P. V. Semenov, “Continuous interior selections in nonnormable spaces”, Topology Appl., 281 (2020), 107206 | DOI | MR | Zbl

[11] H. Weizsäker, “A note on infinite dimensional convex sets”, Math. Scand., 38:2 (1976), 321–324 | DOI | MR

[12] E. V. Schepin, “Topologiya predelnykh prostranstv neschetnykh obratnykh spektrov”, UMN, 31:5(191) (1976), 191–226 | MR | Zbl