Interior points of convex compactа and continuous choice of exact measures
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 125-131

Voir la notice de l'article provenant de la source Math-Net.Ru

For a metric space $M$ we prove existence of continuous maps $\{M_n\}^{\infty}_{n=1}$ associating to a compact subset $K \subset M$ a probability measure $M_n(K)$ with $\operatorname{supp}(M_n(K)) = K$ in such a way that the set $\{M_n(K)\}^{\infty}_{n=1}$ is dense in the space of probability measures on $K$.
Keywords: Probability measures, exact measures, interior points of convex sets, continuous selections.
@article{FAA_2024_58_1_a8,
     author = {Pavel Semenov},
     title = {Interior points of convex compact{\cyra} and continuous choice of exact measures},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {125--131},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/}
}
TY  - JOUR
AU  - Pavel Semenov
TI  - Interior points of convex compactа and continuous choice of exact measures
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 125
EP  - 131
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/
LA  - ru
ID  - FAA_2024_58_1_a8
ER  - 
%0 Journal Article
%A Pavel Semenov
%T Interior points of convex compactа and continuous choice of exact measures
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 125-131
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/
%G ru
%F FAA_2024_58_1_a8
Pavel Semenov. Interior points of convex compactа and continuous choice of exact measures. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 125-131. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a8/