Noncommutative geometry of random surfaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 84-103

Voir la notice de l'article provenant de la source Math-Net.Ru

We associate a noncommutative curve to a periodic, bipartite, planar dimer model with polygonal boundary. It determines the inverse Kasteleyn matrix and hence all correlations. It may be seen as a quantization of the limit shape construction of Kenyon and the author. We also discuss various directions in which this correspondence may be generalized.
Keywords: Dimer model, finite-difference operators, non-commutative geometry.
@article{FAA_2024_58_1_a5,
     author = {Andrei Okounkov},
     title = {Noncommutative geometry of random surfaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {84--103},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a5/}
}
TY  - JOUR
AU  - Andrei Okounkov
TI  - Noncommutative geometry of random surfaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 84
EP  - 103
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a5/
LA  - ru
ID  - FAA_2024_58_1_a5
ER  - 
%0 Journal Article
%A Andrei Okounkov
%T Noncommutative geometry of random surfaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 84-103
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a5/
%G ru
%F FAA_2024_58_1_a5
Andrei Okounkov. Noncommutative geometry of random surfaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 84-103. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a5/