Polynomial Eulerian characteristic of nilmanifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 22-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies bundle towers $M^{n+1}\to M^{n}\to \dots \to S^1$, $\geqslant 1$, with fiber $S^1$, where $M^n = L^n\!/\Gamma^n$ are compact smooth nilmanifolds and $L^n\thickapprox \mathbb{R}^n$ is a group of polynomial transformations of the line $\mathbb{R}^1$. The focus is on the well-known problem of calculating cohomology rings with rational coefficients of manifolds $M^n$. Using the canonical bigradation in the de Rham complex of manifolds $M^n$, we introduce the concept of polynomial Eulerian characteristic and calculate it for these manifolds.
Keywords: bigraded de Rham complex, algebra of left invariant differential operators
Mots-clés : polynomial transformations of a line, Gysin exact sequence.
@article{FAA_2024_58_1_a2,
     author = {V. M. Buchstaber},
     title = {Polynomial {Eulerian} characteristic of nilmanifolds},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {22--41},
     publisher = {mathdoc},
     volume = {58},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
TI  - Polynomial Eulerian characteristic of nilmanifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2024
SP  - 22
EP  - 41
VL  - 58
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/
LA  - ru
ID  - FAA_2024_58_1_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%T Polynomial Eulerian characteristic of nilmanifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2024
%P 22-41
%V 58
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/
%G ru
%F FAA_2024_58_1_a2
V. M. Buchstaber. Polynomial Eulerian characteristic of nilmanifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 22-41. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/