Polynomial Eulerian characteristic of nilmanifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 22-41
Voir la notice de l'article provenant de la source Math-Net.Ru
The article studies bundle towers $M^{n+1}\to M^{n}\to \dots \to S^1$, $\geqslant 1$, with fiber $S^1$, where $M^n = L^n\!/\Gamma^n$ are compact smooth nilmanifolds and $L^n\thickapprox \mathbb{R}^n$ is a group of polynomial transformations of the line $\mathbb{R}^1$. The focus is on the well-known problem of calculating cohomology rings with rational coefficients of manifolds $M^n$. Using the canonical bigradation in the de Rham complex of manifolds $M^n$, we introduce the concept of polynomial Eulerian characteristic and calculate it for these manifolds.
Keywords:
bigraded de Rham complex, algebra of left invariant differential operators
Mots-clés : polynomial transformations of a line, Gysin exact sequence.
Mots-clés : polynomial transformations of a line, Gysin exact sequence.
@article{FAA_2024_58_1_a2,
author = {V. M. Buchstaber},
title = {Polynomial {Eulerian} characteristic of nilmanifolds},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {22--41},
publisher = {mathdoc},
volume = {58},
number = {1},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/}
}
V. M. Buchstaber. Polynomial Eulerian characteristic of nilmanifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 58 (2024) no. 1, pp. 22-41. http://geodesic.mathdoc.fr/item/FAA_2024_58_1_a2/