The Cayley–Hamilton theorem and resolvent representation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 130-132
Cet article a éte moissonné depuis la source Math-Net.Ru
For the Frobenius matrix accompanying an algebraic (differential) equation in a complex Banach algebra, the Cayley–Hamilton theorem is proved, which is used to obtain a representation of the resolvent.
Keywords:
complex Banach algebra, algebraic and differential equations, resolvent, accompanying Frobenius matrix, Cayley–Hamilton theorem.
@article{FAA_2023_57_4_a9,
author = {I. D. Kostrub},
title = {The {Cayley{\textendash}Hamilton} theorem and resolvent representation},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {130--132},
year = {2023},
volume = {57},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/}
}
I. D. Kostrub. The Cayley–Hamilton theorem and resolvent representation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 130-132. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/
[1] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR
[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[3] V. G. Kurbatov, I. V. Kurbatova, Comput. Methods Appl. Math., 2017 | DOI
[4] A. I. Perov, I. D. Kostrub, Dokl. RAN, 491:4 (2020), 83–87
[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR
[6] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR