The Cayley--Hamilton theorem and resolvent representation
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 130-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Frobenius matrix accompanying an algebraic (differential) equation in a complex Banach algebra, the Cayley–Hamilton theorem is proved, which is used to obtain a representation of the resolvent.
Keywords: complex Banach algebra, algebraic and differential equations, resolvent, accompanying Frobenius matrix, Cayley–Hamilton theorem.
@article{FAA_2023_57_4_a9,
     author = {I. D. Kostrub},
     title = {The {Cayley--Hamilton} theorem and resolvent representation},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {130--132},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/}
}
TY  - JOUR
AU  - I. D. Kostrub
TI  - The Cayley--Hamilton theorem and resolvent representation
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 130
EP  - 132
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/
LA  - ru
ID  - FAA_2023_57_4_a9
ER  - 
%0 Journal Article
%A I. D. Kostrub
%T The Cayley--Hamilton theorem and resolvent representation
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 130-132
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/
%G ru
%F FAA_2023_57_4_a9
I. D. Kostrub. The Cayley--Hamilton theorem and resolvent representation. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 130-132. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a9/

[1] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[2] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[3] V. G. Kurbatov, I. V. Kurbatova, Comput. Methods Appl. Math., 2017 | DOI

[4] A. I. Perov, I. D. Kostrub, Dokl. RAN, 491:4 (2020), 83–87

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[6] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR