Remarks on Yangian-type algebras and double Poisson brackets
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 75-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a recent paper, one of the authors proposed a construction of associative algebras which share a number of properties of the Yangians of series A but are more massive. We show that this construction admits a generalization which reveals a direct connection with a large family of double Poisson brackets on free associative algebras, which was described by Pichereau and Van de Weyer (in 2008).
Keywords: centralizer construction, Yangians
Mots-clés : Poisson algebras, double Poisson brackets.
@article{FAA_2023_57_4_a5,
     author = {G. I. Olshanski and N. A. Safonkin},
     title = {Remarks on {Yangian-type} algebras and double {Poisson} brackets},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/}
}
TY  - JOUR
AU  - G. I. Olshanski
AU  - N. A. Safonkin
TI  - Remarks on Yangian-type algebras and double Poisson brackets
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 75
EP  - 88
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/
LA  - ru
ID  - FAA_2023_57_4_a5
ER  - 
%0 Journal Article
%A G. I. Olshanski
%A N. A. Safonkin
%T Remarks on Yangian-type algebras and double Poisson brackets
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 75-88
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/
%G ru
%F FAA_2023_57_4_a5
G. I. Olshanski; N. A. Safonkin. Remarks on Yangian-type algebras and double Poisson brackets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 75-88. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/

[1] V. Ginzburg, T. Schedler, “Moyal quantization and stable homology of necklace Lie algebras”, Mosc. Math. J., 6:3 (2006), 431–459 | DOI | MR | Zbl

[2] A. Molev, Yangians and Classical Lie Algebras, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[3] A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov, “Double Poisson brackets on free associative algebras”, Noncommutative Birational Geometry, Representations and Combinatorics, Contemp. Math., 592, Amer. Math. Soc., Providence, RI, 2013, 225–239 | DOI | MR | Zbl

[4] G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in Representation Theory, Adv. Sov. Math., 2, ed. A. A. Kirillov, ed., Amer. Math. Soc., Providence, RI, 1991, 1–66 | MR

[5] G. Olshanski, The centralizer construction and Yangian-type algebras, arXiv: 2208.04809 | MR

[6] A. Pichereau, G. Van de Weyer, “Double Poisson cohomology of path algebras of quivers”, J. Algebra, 319:5 (2008), 2166–2208 | DOI | MR | Zbl

[7] T. Schedler, “A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver”, Int. Math. Res. Notices, 2005:12 (2005), 725–760 | DOI | MR | Zbl

[8] M. Van den Bergh, “Double Poisson algebras”, Trans. Amer. Math. Soc., 360:11 (2008), 5711–5799 | DOI | MR