Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_4_a5, author = {G. I. Olshanski and N. A. Safonkin}, title = {Remarks on {Yangian-type} algebras and double {Poisson} brackets}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {75--88}, publisher = {mathdoc}, volume = {57}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/} }
TY - JOUR AU - G. I. Olshanski AU - N. A. Safonkin TI - Remarks on Yangian-type algebras and double Poisson brackets JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 75 EP - 88 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/ LA - ru ID - FAA_2023_57_4_a5 ER -
G. I. Olshanski; N. A. Safonkin. Remarks on Yangian-type algebras and double Poisson brackets. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 75-88. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a5/
[1] V. Ginzburg, T. Schedler, “Moyal quantization and stable homology of necklace Lie algebras”, Mosc. Math. J., 6:3 (2006), 431–459 | DOI | MR | Zbl
[2] A. Molev, Yangians and Classical Lie Algebras, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl
[3] A. V. Odesskii, V. N. Rubtsov, V. V. Sokolov, “Double Poisson brackets on free associative algebras”, Noncommutative Birational Geometry, Representations and Combinatorics, Contemp. Math., 592, Amer. Math. Soc., Providence, RI, 2013, 225–239 | DOI | MR | Zbl
[4] G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in Representation Theory, Adv. Sov. Math., 2, ed. A. A. Kirillov, ed., Amer. Math. Soc., Providence, RI, 1991, 1–66 | MR
[5] G. Olshanski, The centralizer construction and Yangian-type algebras, arXiv: 2208.04809 | MR
[6] A. Pichereau, G. Van de Weyer, “Double Poisson cohomology of path algebras of quivers”, J. Algebra, 319:5 (2008), 2166–2208 | DOI | MR | Zbl
[7] T. Schedler, “A Hopf algebra quantizing a necklace Lie algebra canonically associated to a quiver”, Int. Math. Res. Notices, 2005:12 (2005), 725–760 | DOI | MR | Zbl
[8] M. Van den Bergh, “Double Poisson algebras”, Trans. Amer. Math. Soc., 360:11 (2008), 5711–5799 | DOI | MR