Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 60-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic behavior of an exponential integral is studied in which the phase function has the form of a special deformation of the germ of a hyperbolic unimodal singularity of type $T_{4,4,4}$. The integral under examination satisfies the heat equation, its Cole–Hopf transformation gives a solution of the vector Burgers equation in four-dimensional space-time, and its principal asymptotic approximations are expressed in terms of real solutions of systems of third-degree algebraic equations. The obtained analytical results make it possible to trace the bifurcations of an asymptotic structure depending on the parameter of the modulus of the singularity.
Keywords: hyperbolic unimodal singularity, Laplace method, asymptotics, Whitney pleat, vector Burgers equation.
@article{FAA_2023_57_4_a4,
     author = {S. V. Zakharov},
     title = {Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {60--74},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/}
}
TY  - JOUR
AU  - S. V. Zakharov
TI  - Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 60
EP  - 74
VL  - 57
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/
LA  - ru
ID  - FAA_2023_57_4_a4
ER  - 
%0 Journal Article
%A S. V. Zakharov
%T Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 60-74
%V 57
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/
%G ru
%F FAA_2023_57_4_a4
S. V. Zakharov. Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 60-74. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982

[2] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[3] M. V. Fedoryuk, Metod perevala, Nauka, M., 1983

[4] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR

[5] V. I. Arnold, Teoriya katastrof, Nauka, M., 1990 | MR

[6] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996

[7] M. Morse, The Calculus of Variations in the Large, Amer. Math. Soc., Providence, RI, 1934 | MR | Zbl

[8] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton Univ. Press, Princeton, 1968 | MR | Zbl

[9] H. Whitney, “On singularities of mappings of Euclidean spaces, I”, Ann. of Math., 62 (1955), 374–410 | DOI | MR | Zbl

[10] V. I. Arnold, “Integraly bystro ostsilliruyuschikh funktsii i osobennosti proektsii lagranzhevykh mnogoobrazii”, Funkts. analiz i ego pril., 6:3 (1972), 61–62 | MR

[11] V. I. Arnold, “Zamechaniya o metode statsionarnoi fazy i chislakh Kokstera”, UMN, 28:5 (1973), 17–44 | MR | Zbl

[12] A. N. Varchenko, “Mnogogranniki Nyutona i otsenki ostsilliruyuschikh integralov”, Funkts. analiz i ego pril., 10:3 (1976), 13–38 | MR

[13] A. N. Varchenko, “Asimptotiki integralov metoda perevala”, UMN, 36:4 (1981), 212–213

[14] V. A. Vasilev, “Asimptotika eksponentsialnykh integralov, diagramma Nyutona i klassifikatsiya tochek minimuma”, Funkts. analiz i ego pril., 11:3 (1977), 1–11

[15] V. A. Vasilev, “Asimptotika eksponentsialnykh integralov v kompleksnoi oblasti”, Funkts. analiz i ego pril., 13:4 (1979), 1–12 | Zbl

[16] V. I. Arnold, “Klassifikatsiya unimodalnykh kriticheskikh tochek funktsii”, Funkts. analiz i ego pril., 7:3 (1973), 75–76 | MR

[17] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii. Prilozheniya k nelineinoi akustike, Fizmatlit, M., 2008

[18] S. N. Gurbatov, A. I. Saichev, S. F. Shandarin, “Krupnomasshtabnaya struktura Vselennoi. Priblizhenie Zeldovicha i model slipaniya”, UFN, 182:3 (2012), 233–261 | DOI

[19] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[20] A. M. Ilin, “Ob asimptotike reshenii odnoi zadachi s malym parametrom”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 258–275

[21] S. V. Zakharov, “Osobennosti tipov $A$ i $B$ v asimptoticheskom analize reshenii parabolicheskogo uravneniya”, Funkts. analiz i ego pril., 49:4 (2015), 82–85 | DOI | Zbl

[22] I. A. Bogaevskii, “Perestroiki osobennostei funktsii minimuma i bifurkatsii udarnykh voln uravneniya Byurgersa s ischezayuschei vyazkostyu”, Algebra i analiz, 1:4 (1989), 1–16

[23] I. A. Bogaevsky, “Perestroikas of shocks and singularities of minimum functions”, Phys. D: Nonlinear Phenomena, 173:1–2 (2002), 1–28 | DOI | MR | Zbl

[24] I. M. Gelfand, “Nekotorye zadachi teorii kvazilineinykh uravnenii”, UMN, 14:2(86) (1959), 87–158 | MR | Zbl

[25] S. V. Zakharov, “Asimptoticheskoe reshenie mnogomernogo uravneniya Byurgersa vblizi singulyarnosti”, TMF, 196:1 (2018), 42–49 | DOI | MR | Zbl

[26] S. V. Zakharov, “Evolution of a multiscale singularity of the solution of the Burgers equation in the 4-dimensional space-time”, Ural Math. J., 8:1 (2022), 136–144 | DOI | MR | Zbl