Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 60-74
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic behavior of an exponential integral is studied in which the phase function has the form
of a special deformation of the germ of a hyperbolic unimodal singularity of type $T_{4,4,4}$.
The integral under examination satisfies the heat equation, its Cole–Hopf transformation gives a solution
of the vector Burgers equation in four-dimensional space-time, and its principal asymptotic approximations
are expressed in terms of real solutions of systems of third-degree algebraic equations. The obtained
analytical results make it possible to trace the bifurcations of an asymptotic structure depending on the
parameter of the modulus of the singularity.
Keywords:
hyperbolic unimodal singularity, Laplace method, asymptotics, Whitney pleat, vector Burgers equation.
@article{FAA_2023_57_4_a4,
author = {S. V. Zakharov},
title = {Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {60--74},
publisher = {mathdoc},
volume = {57},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/}
}
TY - JOUR AU - S. V. Zakharov TI - Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 60 EP - 74 VL - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/ LA - ru ID - FAA_2023_57_4_a4 ER -
S. V. Zakharov. Reconstructions of the asymptotics of an integral determined by a hyperbolic unimodal singularity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 4, pp. 60-74. http://geodesic.mathdoc.fr/item/FAA_2023_57_4_a4/