@article{FAA_2023_57_3_a1,
author = {I. D. Motorin},
title = {Resolution of singularities of the odd nilpotent cone of orthosymplectic {Lie} superalgebras},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {19--38},
year = {2023},
volume = {57},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/}
}
I. D. Motorin. Resolution of singularities of the odd nilpotent cone of orthosymplectic Lie superalgebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 19-38. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/
[1] A. Berezhnoi, “Klassifikatsiya lineinykh otobrazhenii prostranstv so skalyarnym umnozheniem”, podana v Izv. RAN
[2] A. Braverman, M. Finkelberg, R. Travkin, “Orthosymplectic Satake equivalence”, Commun. Number Theory Phys., 16:4 (2022), 695–732 | DOI | MR | Zbl
[3] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Co., New York, 1993 | MR | Zbl
[4] C. Gruson, S. Leidwanger, “Cônes nilpotentes des super algèbres de Lie orthosymplectiques”, Ann. Math. Blaise Pascal, 17:2 (2010), 303–326 | DOI | MR | Zbl
[5] C. Gruson, V. Serganova, “Cohomology of generalized supergrassmannians and character formulas for basic classical Lie superalgebras”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 852–892 | DOI | MR | Zbl
[6] H. Kraft, C. Procesi, “On the geometry of conjugacy classes in classical groups”, Comment. Math. Helv., 57:4 (1982), 539–602 | DOI | MR | Zbl
[7] D. I. Panyushev, “Generalised Kostka–Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles”, Selecta Math. (N.S.), 16:2 (2010), 315–342 | DOI | MR | Zbl
[8] V. L. Popov, E. B. Vinberg, “Teoriya invariantov”, Algebraicheskaya geometriya-4, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, 1989, 137–309