Resolution of singularities of the odd nilpotent cone of orthosymplectic Lie superalgebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 19-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a Springer-type resolution of singularities of the odd nilpotent cone of the orthosymplectic Lie superalgebras $\mathfrak{osp}(m|2n)$.
Keywords: algebraic geometry, resolution of singularities, nilpotent cone, Lie superalgebra.
@article{FAA_2023_57_3_a1,
     author = {I. D. Motorin},
     title = {Resolution of singularities of the odd nilpotent cone of orthosymplectic {Lie} superalgebras},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {19--38},
     publisher = {mathdoc},
     volume = {57},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/}
}
TY  - JOUR
AU  - I. D. Motorin
TI  - Resolution of singularities of the odd nilpotent cone of orthosymplectic Lie superalgebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 19
EP  - 38
VL  - 57
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/
LA  - ru
ID  - FAA_2023_57_3_a1
ER  - 
%0 Journal Article
%A I. D. Motorin
%T Resolution of singularities of the odd nilpotent cone of orthosymplectic Lie superalgebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 19-38
%V 57
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/
%G ru
%F FAA_2023_57_3_a1
I. D. Motorin. Resolution of singularities of the odd nilpotent cone of orthosymplectic Lie superalgebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 3, pp. 19-38. http://geodesic.mathdoc.fr/item/FAA_2023_57_3_a1/

[1] A. Berezhnoi, “Klassifikatsiya lineinykh otobrazhenii prostranstv so skalyarnym umnozheniem”, podana v Izv. RAN

[2] A. Braverman, M. Finkelberg, R. Travkin, “Orthosymplectic Satake equivalence”, Commun. Number Theory Phys., 16:4 (2022), 695–732 | DOI | MR | Zbl

[3] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Co., New York, 1993 | MR | Zbl

[4] C. Gruson, S. Leidwanger, “Cônes nilpotentes des super algèbres de Lie orthosymplectiques”, Ann. Math. Blaise Pascal, 17:2 (2010), 303–326 | DOI | MR | Zbl

[5] C. Gruson, V. Serganova, “Cohomology of generalized supergrassmannians and character formulas for basic classical Lie superalgebras”, Proc. Lond. Math. Soc. (3), 101:3 (2010), 852–892 | DOI | MR | Zbl

[6] H. Kraft, C. Procesi, “On the geometry of conjugacy classes in classical groups”, Comment. Math. Helv., 57:4 (1982), 539–602 | DOI | MR | Zbl

[7] D. I. Panyushev, “Generalised Kostka–Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles”, Selecta Math. (N.S.), 16:2 (2010), 315–342 | DOI | MR | Zbl

[8] V. L. Popov, E. B. Vinberg, “Teoriya invariantov”, Algebraicheskaya geometriya-4, Itogi nauki i tekhniki. Ser. Sovrem. probl. mat. Fundam. napravleniya, 55, VINITI, 1989, 137–309