Limit spectral measures of matrix distributions of metric triples
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 106-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of the limit spectral measure of a metric triple (i.e., a metric measure space)
is defined. If the metric is square integrable, then the limit spectral measure
is deterministic and coincides with the spectrum of the integral
operator on $L^2(\mu)$ with kernel $\rho$. An example
in which there is no deterministic spectral measure is constructed.
Keywords:
metric triples, limit measures
Mots-clés : spectra, Cauchy distribution.
Mots-clés : spectra, Cauchy distribution.
@article{FAA_2023_57_2_a7,
author = {A. M. Vershik and F. V. Petrov},
title = {Limit spectral measures of matrix distributions of metric triples},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {106--110},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a7/}
}
TY - JOUR AU - A. M. Vershik AU - F. V. Petrov TI - Limit spectral measures of matrix distributions of metric triples JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 106 EP - 110 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a7/ LA - ru ID - FAA_2023_57_2_a7 ER -
A. M. Vershik; F. V. Petrov. Limit spectral measures of matrix distributions of metric triples. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 106-110. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a7/