A convergence rate estimate for remotest projections on three subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 100-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an estimate of the rate of convergence to zero of the norms of remotest projections on three subspaces of a Hilbert space with zero intersection for starting vectors in the sum of orthogonal complements to these subspaces.
Keywords: Hilbert space, remotest projections, greedy approximations
Mots-clés : convergence rate.
@article{FAA_2023_57_2_a6,
     author = {P. A. Borodin and L. Sh. Burusheva},
     title = {A convergence rate estimate for remotest projections on three subspaces},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--105},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/}
}
TY  - JOUR
AU  - P. A. Borodin
AU  - L. Sh. Burusheva
TI  - A convergence rate estimate for remotest projections on three subspaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 100
EP  - 105
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/
LA  - ru
ID  - FAA_2023_57_2_a6
ER  - 
%0 Journal Article
%A P. A. Borodin
%A L. Sh. Burusheva
%T A convergence rate estimate for remotest projections on three subspaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 100-105
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/
%G ru
%F FAA_2023_57_2_a6
P. A. Borodin; L. Sh. Burusheva. A convergence rate estimate for remotest projections on three subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/

[1] J. von Neumann, Ann. of Math., 50 (1949), 401–485 | DOI | MR | Zbl

[2] P. Borodin, E. Kopecká, J. Approx. Theory, 260 (2020), 105486 | DOI | MR | Zbl

[3] L. Jones, Ann. Stat., 15:2 (1987), 880–882 | DOI | MR | Zbl

[4] V. Temlyakov, Greedy Approximation, Cambridge University Press, Cambridge, 2011 | MR | Zbl

[5] R. A. DeVore, V. N. Temlyakov, Adv. Comput. Math., 5:2–3 (1996), 173–187 | DOI | MR | Zbl

[6] A. V. Silnichenko, Matem. zametki, 76:4 (2004), 628–632 | DOI | MR | Zbl

[7] E. D. Livshits, Izv. RAN, ser. matem., 73:6 (2009), 125–144 | DOI | MR | Zbl