A convergence rate estimate for remotest projections on three subspaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 100-105
Voir la notice de l'article provenant de la source Math-Net.Ru
We give an estimate of the rate of convergence to zero of the norms of remotest projections
on three subspaces of a Hilbert space with zero intersection for starting
vectors in the sum of orthogonal complements to these subspaces.
Keywords:
Hilbert space, remotest projections, greedy approximations
Mots-clés : convergence rate.
Mots-clés : convergence rate.
@article{FAA_2023_57_2_a6,
author = {P. A. Borodin and L. Sh. Burusheva},
title = {A convergence rate estimate for remotest projections on three subspaces},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {100--105},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/}
}
TY - JOUR AU - P. A. Borodin AU - L. Sh. Burusheva TI - A convergence rate estimate for remotest projections on three subspaces JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 100 EP - 105 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/ LA - ru ID - FAA_2023_57_2_a6 ER -
P. A. Borodin; L. Sh. Burusheva. A convergence rate estimate for remotest projections on three subspaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 100-105. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a6/