Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
We define certain subvarieties, called $\theta$-Hecke correspondences, in Cartesian products
of diagram automorphism fixed quiver varieties.
These give us generators of diagram automorphism fixed Lie algebras.
Keywords:
diagram automorphism, quiver variety, Hecke correspondence.
@article{FAA_2023_57_2_a2,
author = {Zh. Dong and H. Ma},
title = {Diagram automorphism fixed {Lie} algebras and diagram automorphism fixed quiver varieties},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {31--40},
publisher = {mathdoc},
volume = {57},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/}
}
TY - JOUR AU - Zh. Dong AU - H. Ma TI - Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 31 EP - 40 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/ LA - ru ID - FAA_2023_57_2_a2 ER -
Zh. Dong; H. Ma. Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 31-40. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/