Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2023_57_2_a2, author = {Zh. Dong and H. Ma}, title = {Diagram automorphism fixed {Lie} algebras and diagram automorphism fixed quiver varieties}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {31--40}, publisher = {mathdoc}, volume = {57}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/} }
TY - JOUR AU - Zh. Dong AU - H. Ma TI - Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2023 SP - 31 EP - 40 VL - 57 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/ LA - ru ID - FAA_2023_57_2_a2 ER -
Zh. Dong; H. Ma. Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 31-40. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/
[1] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Stadies in Advanced Mathematics, 96, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[2] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Boston, 2010 | MR | Zbl
[3] A. Henderson, A. Licata, “Diagram automorphisms of quiver varieties”, Adv. Math., 267 (2014), 225–276 | DOI | MR | Zbl
[4] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993
[5] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR | Zbl
[6] H. Nakajima, “Quiver varieties and Kac–Moody algebras”, Duke Math. J., 91:3 (1998), 515–560 | DOI | MR | Zbl