Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We define certain subvarieties, called $\theta$-Hecke correspondences, in Cartesian products of diagram automorphism fixed quiver varieties. These give us generators of diagram automorphism fixed Lie algebras.
Keywords: diagram automorphism, quiver variety, Hecke correspondence.
@article{FAA_2023_57_2_a2,
     author = {Zh. Dong and H. Ma},
     title = {Diagram automorphism fixed {Lie} algebras and diagram automorphism fixed quiver varieties},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/}
}
TY  - JOUR
AU  - Zh. Dong
AU  - H. Ma
TI  - Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 31
EP  - 40
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/
LA  - ru
ID  - FAA_2023_57_2_a2
ER  - 
%0 Journal Article
%A Zh. Dong
%A H. Ma
%T Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 31-40
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/
%G ru
%F FAA_2023_57_2_a2
Zh. Dong; H. Ma. Diagram automorphism fixed Lie algebras and diagram automorphism fixed quiver varieties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 31-40. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a2/

[1] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Stadies in Advanced Mathematics, 96, Cambridge University Press, Cambridge, 2005 | MR | Zbl

[2] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser Boston, Boston, 2010 | MR | Zbl

[3] A. Henderson, A. Licata, “Diagram automorphisms of quiver varieties”, Adv. Math., 267 (2014), 225–276 | DOI | MR | Zbl

[4] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993

[5] H. Nakajima, “Instantons on ALE spaces, quiver varieties, and Kac–Moody algebras”, Duke Math. J., 76:2 (1994), 365–416 | DOI | MR | Zbl

[6] H. Nakajima, “Quiver varieties and Kac–Moody algebras”, Duke Math. J., 91:3 (1998), 515–560 | DOI | MR | Zbl