Multipliers for the Calder\'on construction
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 3-17

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of a new approach to the Calderón construction $X_0^{\theta} X_1^{1-\theta}$ for ideal spaces $X_0$ and $X_1$ and a parameter $\theta \in [0,1]$, final results concerning a description of multipliers spaces are obtained. In particular, it is shown that if ideal spaces $X_0$ and $X_1$ have the Fatou property, then $M(X_0^{\theta_0} X_1^{1-\theta_0}\,{\to}\,X_0^{\theta_1} X_1^{1-\theta_1}) = M(X_1^{\theta_1 - \theta_0} \to X_0^{\theta_1 -\theta_0})$ for $0 \theta_0 \theta_1 1$. Due to the absence of constraints on the ideal spaces $X_0$ and $X_1$, the obtained results apply to a large class of ideal spaces.
Keywords: ideal Banach space, pointwise multiplier, local Morrey space.
Mots-clés : Calderón construction
@article{FAA_2023_57_2_a0,
     author = {E. I. Berezhnoi},
     title = {Multipliers for the {Calder\'on} construction},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Multipliers for the Calder\'on construction
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 17
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/
LA  - ru
ID  - FAA_2023_57_2_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Multipliers for the Calder\'on construction
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-17
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/
%G ru
%F FAA_2023_57_2_a0
E. I. Berezhnoi. Multipliers for the Calder\'on construction. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/