Multipliers for the Calder\'on construction
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 3-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of a new approach to the Calderón construction $X_0^{\theta} X_1^{1-\theta}$ for ideal spaces $X_0$ and $X_1$ and a parameter $\theta \in [0,1]$, final results concerning a description of multipliers spaces are obtained. In particular, it is shown that if ideal spaces $X_0$ and $X_1$ have the Fatou property, then $M(X_0^{\theta_0} X_1^{1-\theta_0}\,{\to}\,X_0^{\theta_1} X_1^{1-\theta_1}) = M(X_1^{\theta_1 - \theta_0} \to X_0^{\theta_1 -\theta_0})$ for $0 \theta_0 \theta_1 1$. Due to the absence of constraints on the ideal spaces $X_0$ and $X_1$, the obtained results apply to a large class of ideal spaces.
Keywords: ideal Banach space, pointwise multiplier, local Morrey space.
Mots-clés : Calderón construction
@article{FAA_2023_57_2_a0,
     author = {E. I. Berezhnoi},
     title = {Multipliers for the {Calder\'on} construction},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--17},
     publisher = {mathdoc},
     volume = {57},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Multipliers for the Calder\'on construction
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 3
EP  - 17
VL  - 57
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/
LA  - ru
ID  - FAA_2023_57_2_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Multipliers for the Calder\'on construction
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 3-17
%V 57
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/
%G ru
%F FAA_2023_57_2_a0
E. I. Berezhnoi. Multipliers for the Calder\'on construction. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 2, pp. 3-17. http://geodesic.mathdoc.fr/item/FAA_2023_57_2_a0/

[1] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[2] G. Bennett, Factorizing the Classical Inequalities, Mem. Amer. Math. Soc., 120, Amer. Math. Soc., Providence, RI, 1996 | MR

[3] E. I. Berezhnoi, “O teoreme G. Ya. Lozanovskogo”, Izv. VUZov, ser. matem., 1982, no. 2, 81–83 | Zbl

[4] E. I. Berezhnoi, “Diskretnyi variant lokalnykh prostranstv Morri”, Izv. RAN, ser. matem., 81:1 (2017), 3–30 | DOI | MR | Zbl

[5] E. I. Berezhnoi, “Geometricheskie svoistva prostranstva $ \varphi(X, Y) $”, Funkts. analiz i ego pril., 18:1 (1984), 59–60 | MR | Zbl

[6] E. I. Berezhnoi, “Calculation of the Calderón–Lozanovskii construction for a couple of local Morrey spaces”, Eurasian Math. J., 11:3 (2020), 21–34 | DOI | MR | Zbl

[7] E. I. Berezhnoi, “Multipliers for local Morrey spaces”, Positivity, 26:5 (2022), 88 | DOI | MR | Zbl

[8] E. I. Berezhnoi, L. Maligranda, “Representation of Banach ideal spaces and factorization of operators”, Canad. J. Math., 57:5 (2005), 897–940 | DOI | MR | Zbl

[9] A. P. Calderon, “Intermediate spaces and interpolation, the complex method”, Stud. Math., 24 (1964), 113–190 | DOI | MR | Zbl

[10] M. Cwikel, P. G. Nilsson, “Interpolation of weighted Banach lattices”, Interpolation of Weighted Banach Lattices. A Characterization of Relatively Decomposable Banach Lattices, Mem. Amer. Math. Soc., 165, 2003, 1–105 | MR

[11] O. Delgado, E. A. Sánchez Pérez, “Summability properties for multiplication operators on Banach function spaces”, Integral Equations Operator Theory, 66:2 (2010), 197–214 | DOI | MR | Zbl

[12] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR

[13] P. Kolwicz, K. Leśnik, L. Maligranda, “Pointwise multipliers of Calderón–Lozanovski\u i spaces”, Math. Nachr., 286:8–9 (2013), 876–907 | DOI | MR | Zbl

[14] P. Kolwicz, K. Leśnik, L. Maligranda, “Pointwise products of some Banach function spaces and factorization”, J. Funct. Anal., 266:2 (2014), 616–659 | DOI | MR | Zbl

[15] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[16] K. Leśnik, J. Tomaszewski, “Pointwise multipliers of Orlicz function spaces and factorization”, Positivity, 21:4 (2017), 1563–1573 | DOI | MR | Zbl

[17] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR

[18] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, v. II, Function Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[19] G. Ya. Lozanovskii, “O nekotorykh banakhovykh reshetkakh”, Sib. matem. zhurn., 10:3 (1969), 584–599 | Zbl

[20] B. Maurey, “Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L_p$”, Asterisque, 11 (1974) | MR

[21] V. I. Ovchinnikov, “The methods of orbits in interpolation theory”, Math. Reports., 1:2 (1984), 349–516 | MR

[22] A. R. Schep, “Products and factors of Banach function spaces”, Positivity, 14:2 (2010), 301–319 | DOI | MR | Zbl