A remark on Davies' Hardy inequality
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 104-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an “integration by parts” approach to Davies' Hardy inequality. An improvement with a strictly larger Hardy weight is thereby obtained.
Keywords: Hardy inequalities, mean distances, integration by parts.
@article{FAA_2023_57_1_a9,
     author = {Yi C. Huang},
     title = {A remark on {Davies'} {Hardy} inequality},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {104--107},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a9/}
}
TY  - JOUR
AU  - Yi C. Huang
TI  - A remark on Davies' Hardy inequality
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 104
EP  - 107
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a9/
LA  - ru
ID  - FAA_2023_57_1_a9
ER  - 
%0 Journal Article
%A Yi C. Huang
%T A remark on Davies' Hardy inequality
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 104-107
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a9/
%G ru
%F FAA_2023_57_1_a9
Yi C. Huang. A remark on Davies' Hardy inequality. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 104-107. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a9/

[1] A. Ancona, J. London Math. Soc., 2:2 (1986), 274–290 | DOI

[2] E. B. Davies, J. Operator Theory, 12:1 (1984), 177–196 | MR | Zbl

[3] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, Cambridge, 1989 | MR | Zbl

[4] E. B. Davies, The Maz'ya Anniversary Collection, Birkhäuser, Basel, 1999, 55–67 | DOI | Zbl

[5] H. Donnelly, Illinois J. Math., 31:4 (1987), 692–698 | DOI | MR | Zbl

[6] R. L. Frank, S. Larson, Funkts. analiz i ego pril., 55:2 (2021), 118–121 | DOI | Zbl

[7] A. Kufner, L. Maligranda, L.-E. Persson, Amer. Math. Monthly, 113:8 (2006), 715–732 | DOI | MR | Zbl

[8] E. H. Lieb, Invent. Math., 74:3 (1983), 441–448 | DOI | MR | Zbl

[9] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR

[10] T. Ozawa, D. Suragan, Proc. Amer. Math. Soc., 148:10 (2020), 4235–4239 | DOI | MR | Zbl

[11] G. Psaradakis, An elementary proof of the one dimensional Poincaré inequality and the Jacobi lemma, hal-02873488, 2020

[12] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Mir, M., 1978 | MR

[13] M. Ruzhansky, D. Suragan, Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities, Progress in Mathematics, 327, Birkhäuser/Springer, Cham, 2019 | DOI | MR | Zbl