The image of a Lagrangian germ of type $E_6^\pm$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 100-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the image of a stable germ of type $E_6^\pm$ of a Lagrangian map to $\mathbb R^n$ is homeomorphic to the germ at zero of a closed half-space.
Keywords: singularities of Lagrangian maps.
@article{FAA_2023_57_1_a8,
     author = {V. D. Sedykh},
     title = {The image of a {Lagrangian} germ of type $E_6^\pm$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {100--103},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a8/}
}
TY  - JOUR
AU  - V. D. Sedykh
TI  - The image of a Lagrangian germ of type $E_6^\pm$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 100
EP  - 103
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a8/
LA  - ru
ID  - FAA_2023_57_1_a8
ER  - 
%0 Journal Article
%A V. D. Sedykh
%T The image of a Lagrangian germ of type $E_6^\pm$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 100-103
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a8/
%G ru
%F FAA_2023_57_1_a8
V. D. Sedykh. The image of a Lagrangian germ of type $E_6^\pm$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 100-103. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a8/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2009

[2] V. D. Sedykh, Izv. RAN. Cer. matem., 79:3 (2015), 159–202 | DOI | MR | Zbl

[3] V. D. Sedykh, Izv. RAN. Cer. matem., 82:3 (2018), 154–169 | DOI | MR | Zbl

[4] V. D. Sedykh, Izv. RAN. Cer. matem., 85:2 (2021), 113–141 | DOI | MR | Zbl

[5] V. D. Sedykh, Matematicheskie metody teorii katastrof, MTsNMO, M., 2021