On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb{R}P^3$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 90-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional manifolds carrying the structure of $n$-valued coset topological groups originating from the Lie groups $Sp(1)$ and $SO(3)$ are classified.
Mots-clés : Lie group
Keywords: $n$-valued topological group, symmetric power.
@article{FAA_2023_57_1_a6,
     author = {D. V. Gugnin},
     title = {On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb{R}P^3$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--92},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a6/}
}
TY  - JOUR
AU  - D. V. Gugnin
TI  - On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb{R}P^3$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 90
EP  - 92
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a6/
LA  - ru
ID  - FAA_2023_57_1_a6
ER  - 
%0 Journal Article
%A D. V. Gugnin
%T On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb{R}P^3$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 90-92
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a6/
%G ru
%F FAA_2023_57_1_a6
D. V. Gugnin. On the structure of coset $n$-valued topological groups on $S^3$ and $\mathbb{R}P^3$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 90-92. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a6/

[1] V. M. Buchstaber, Mosc. Math. J., 6:1 (2006), 57–84 | DOI | MR | Zbl

[2] S. Illman, Math. Ann., 233:3 (1978), 199–220 | DOI | MR | Zbl

[3] F. Waldhausen, Topology, 8 (1969), 81–91 | DOI | MR | Zbl