Connes integration formula: a constructive approach
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 52-76

Voir la notice de l'article provenant de la source Math-Net.Ru

A version of Connes Integration Formula which provides concrete asymptotics of eigenvalues is given. This radically extends the class of quantum-integrable functions on compact Riemannian manifolds.
Keywords: Connes integration formula, compact $d$-dimensional Riemannian manifold, Birman–Solomyak asymptotic formula.
@article{FAA_2023_57_1_a3,
     author = {D. V. Zanin and F. A. Sukochev},
     title = {Connes integration formula: a constructive approach},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--76},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/}
}
TY  - JOUR
AU  - D. V. Zanin
AU  - F. A. Sukochev
TI  - Connes integration formula: a constructive approach
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 52
EP  - 76
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/
LA  - ru
ID  - FAA_2023_57_1_a3
ER  - 
%0 Journal Article
%A D. V. Zanin
%A F. A. Sukochev
%T Connes integration formula: a constructive approach
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 52-76
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/
%G ru
%F FAA_2023_57_1_a3
D. V. Zanin; F. A. Sukochev. Connes integration formula: a constructive approach. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 52-76. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/