Connes integration formula: a constructive approach
Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 52-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

A version of Connes Integration Formula which provides concrete asymptotics of eigenvalues is given. This radically extends the class of quantum-integrable functions on compact Riemannian manifolds.
Keywords: Connes integration formula, compact $d$-dimensional Riemannian manifold, Birman–Solomyak asymptotic formula.
@article{FAA_2023_57_1_a3,
     author = {D. V. Zanin and F. A. Sukochev},
     title = {Connes integration formula: a constructive approach},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--76},
     publisher = {mathdoc},
     volume = {57},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/}
}
TY  - JOUR
AU  - D. V. Zanin
AU  - F. A. Sukochev
TI  - Connes integration formula: a constructive approach
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2023
SP  - 52
EP  - 76
VL  - 57
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/
LA  - ru
ID  - FAA_2023_57_1_a3
ER  - 
%0 Journal Article
%A D. V. Zanin
%A F. A. Sukochev
%T Connes integration formula: a constructive approach
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2023
%P 52-76
%V 57
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/
%G ru
%F FAA_2023_57_1_a3
D. V. Zanin; F. A. Sukochev. Connes integration formula: a constructive approach. Funkcionalʹnyj analiz i ego priloženiâ, Tome 57 (2023) no. 1, pp. 52-76. http://geodesic.mathdoc.fr/item/FAA_2023_57_1_a3/

[1] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–New York, 1976 | DOI | MR | Zbl

[2] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR, ser. matem., 34:5 (1970), 1142–1158

[3] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami”, Vestnik LGU, ser. 1: matem., mekh., astronom., 1977, no. 13, 13–21 | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh uravnenii”, Sib. matem. zhurn., 20:1 (1979), 3–22 | MR | Zbl

[5] O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics 1. $C^*$ and $W^*$ Algebras. Symmetry Groups. Decomposition of States, Texts and Monographs in Physics, Springer-Verlag, Berlin–Heidelberg, 1987 | MR | Zbl

[6] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[7] A. Connes, “The action functional in non-commutative geometry”, Comm. Math. Phys., 117:4 (1988), 673–683 | DOI | MR | Zbl

[8] A. Connes, H. Moscovici, “The local index formula in noncommutative geometry”, Geom. Funct. Anal., 5:2 (1995), 174–243 | DOI | MR | Zbl

[9] P. Dodds, T. Dodds, B. de Pagter, F. Sukochev, “Lipschitz continuity of the absolute value and Riesz projections in symmetric operator spaces”, J. Funct. Anal., 148 (1997), 28–69 | DOI | MR | Zbl

[10] K. Dykema, T. Figiel, G. Weiss, M. Wodzicki, “Commutator structure of operator ideals”, Adv. Math., 185:1 (2004), 1–79 | DOI | MR | Zbl

[11] T. Fack, “Sur la notion de valeur caracteristique”, J. Operator Theory, 7:2 (1982), 307–333 | MR | Zbl

[12] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[13] J. Gracia-Bondia, J. Varilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser Advanced Texts, Birkhäuser, Boston, 2001 | MR | Zbl

[14] E. Hawkins, “Hamiltonian gravity and noncommutative geometry”, Comm. Math. Phys., 187:2 (1997), 471–489 | DOI | MR | Zbl

[15] L. Hörmander, The Analysis of Linear Partial Differential Operators. III. Pseudo-Differential Operators, Classics in Mathematics, Springer, Berlin, 2007 | DOI | MR

[16] J. Huang, F. Sukochev, D. Zanin, “Operator $\theta$-Hölder functions with respect to $\|\,\boldsymbol\cdot\,\|_p$, $0 p\le \infty$”, J. Lond. Math. Soc. (2), 105:4 (2022), 2436–2477 | DOI | MR

[17] N. Kalton, S. Lord, D. Potapov, F. Sukochev, “Traces of compact operators and the noncommutative residue”, Adv. Math., 235 (2013), 1–55 | DOI | MR | Zbl

[18] S. Krein, Yu. Petunin, E. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[19] S. Lord, D. Potapov, F. Sukochev, “Measures from Dixmier traces and zeta functions”, J. Funct. Anal., 259:8 (2010), 1915–1949 | DOI | MR | Zbl

[20] S. Lord, F. Sukochev, D. Zanin, “A last theorem of Kalton and finiteness of Connes' integral”, J. Funct. Anal., 279:7 (2020), 108664 ; https://doi.org/10.1016/j.jfa.2020.108664 | DOI | MR | Zbl

[21] S. Lord, F. Sukochev, D. Zanin, Singular Traces. Theory and Applications, De Gruyter Studies in Mathematics, 46, De Gruyter, Berlin, 2013 | MR | Zbl

[22] S. Lord, F. Sukochev, D. Zanin, Singular Traces, v. 1, De Gruyter Studies in Mathematics, 46/1, Theory, De Gruyter, Berlin, 2021 | MR | Zbl

[23] S. Lord, F. Sukochev, D. Zanin, “Advances in Dixmier traces and applications”, Advances in Noncommutative Geometry—On the Occasion of Alain Connes' 70th Birthday, Springer, Cham, 2020, 491–593 | MR

[24] R. Ponge, “Weyl's laws and Connes' integration formulas for matrix-valued $L\log L$-Orlicz potentials”, Math. Phys. Anal. Geom., 25:2 (2022), 10 | DOI | MR | Zbl

[25] G. Pederson, C$^*$-Algebras and Their Automorphism Groups, LMS Monographs, 14, Academic Press, London–New York, 1979 | MR

[26] G. Rozenblum, “Eigenvalues of singular measures and Connes' noncommutative integration”, J. Spectr. Theory, 12:1 (2022), 259–300 | DOI | MR | Zbl

[27] S. Rosenberg, The Laplacian on a Riemannian Manifold. An Introduction to Analysis on Manifolds, London Mathematical Society Student Texts, 31, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[28] M. Ruzhansky, V. Turunen, Pseudo-Differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators. Theory and Applications, 2, Birkhäuser Verlag, Basel, 2010 | MR | Zbl

[29] I. Segal, “A non-commutative extension of abstract integration”, Ann. Math., 57 (1953), 401–457 | DOI | MR | Zbl

[30] E. Semenov, F. Sukochev, A. Usachev, D. Zanin, “Banach limits and traces on $\mathcal{L}_{1,\infty}$”, Adv. Math., 285 (2015), 568–628 | DOI | MR | Zbl

[31] B. Simon, Trace Ideals and Their Applications, Mathematical Surveys and Monographs, 120, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[32] M. Solomyak, “Spectral problems related to the critical exponent in the Sobolev embedding theorem”, Proc. London Math. Soc. (3), 71:1 (1995), 53–75 | DOI | MR | Zbl

[33] F. Sukochev, D. Zanin, “A $C^{\ast}$-algebraic approach to the principal symbol. I”, J. Operator Theory, 80:2 (2018), 481–522 | MR | Zbl

[34] F. A. Sukochev, D. V. Zanin, “Otsenki Solomyaka dlya operatora Birmana–Shvingera”, Matem. sb., 213:9 (2022), 97–137 | DOI | MR

[35] M. Takesaki, Theory of Operator Algebras I., Encyclopaedia of Mathematical Sciences, 124, Springer-Verlag, Berlin, 2002 | MR | Zbl

[36] M. Taylor, Partial Differential Equations I. Basic Theory, Applied Mathematical Sciences, 115, Springer, New York, 2011 | MR | Zbl