On an elliptic operator degenerating on the boundary
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 109-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega\subset\mathbb{R}^n$ be a bounded domain with smooth boundary $\partial\Omega$, let $D(x)\in C^\infty(\overline\Omega)$ be a defining function of the boundary, and let $B(x)\in C^\infty(\overline\Omega)$ be an $n\times n$ matrix function with self-adjoint positive definite values $B(x )=B^*(x)>0$ for all $x\in\overline\Omega$ The Friedrichs extension of the minimal operator given by the differential expression $\mathcal{A}_0=-\langle\nabla,D(x )B(x)\nabla\rangle$ to $C_0^\infty(\Omega)$ is described.
Keywords: wave equation, degeneracy at the domain boundary, Friedrichs extension
Mots-clés : essential domain.
@article{FAA_2022_56_4_a9,
     author = {V. E. Nazaikinskii},
     title = {On an elliptic operator degenerating on the boundary},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {109--112},
     publisher = {mathdoc},
     volume = {56},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/}
}
TY  - JOUR
AU  - V. E. Nazaikinskii
TI  - On an elliptic operator degenerating on the boundary
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 109
EP  - 112
VL  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/
LA  - ru
ID  - FAA_2022_56_4_a9
ER  - 
%0 Journal Article
%A V. E. Nazaikinskii
%T On an elliptic operator degenerating on the boundary
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 109-112
%V 56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/
%G ru
%F FAA_2022_56_4_a9
V. E. Nazaikinskii. On an elliptic operator degenerating on the boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 109-112. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/

[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Interscience, New York–London, 1957 | MR | Zbl

[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996

[3] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, World Scientific, Singapore, 1989 | Zbl

[4] T. Vukašinac, P. Zhevandrov, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl

[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, Algebra i analiz, 22:6 (2010), 67–90 | MR

[6] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 104:4 (2018), 483–504 | DOI | MR | Zbl

[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 107:5 (2020), 780–786 | DOI | MR | Zbl

[8] O. A. Oleinik, E. V. Radkevich, Matematicheskii analiz, 1969, Itogi nauki. Ser. Matematika., VINITI, M., 1971, 7–252