Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_4_a9, author = {V. E. Nazaikinskii}, title = {On an elliptic operator degenerating on the boundary}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {109--112}, publisher = {mathdoc}, volume = {56}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/} }
V. E. Nazaikinskii. On an elliptic operator degenerating on the boundary. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 109-112. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a9/
[1] J. J. Stoker, Water Waves. The Mathematical Theory with Applications, Interscience, New York–London, 1957 | MR | Zbl
[2] E. N. Pelinovskii, Gidrodinamika voln tsunami, IPF RAN, Nizhnii Novgorod, 1996
[3] C. C. Mei, The Applied Dynamics of Ocean Surface Waves, World Scientific, Singapore, 1989 | Zbl
[4] T. Vukašinac, P. Zhevandrov, Russ. J. Math. Phys., 9:3 (2002), 371–381 | MR | Zbl
[5] S. Yu. Dobrokhotov, V. E. Nazaikinskii, B. Tirotstsi, Algebra i analiz, 22:6 (2010), 67–90 | MR
[6] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 104:4 (2018), 483–504 | DOI | MR | Zbl
[7] S. Yu. Dobrokhotov, V. E. Nazaikinskii, Matem. zametki, 107:5 (2020), 780–786 | DOI | MR | Zbl
[8] O. A. Oleinik, E. V. Radkevich, Matematicheskii analiz, 1969, Itogi nauki. Ser. Matematika., VINITI, M., 1971, 7–252