Hermitian property and simplicity of spectra of Bethe subalgebras in Yangians
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 105-108
Voir la notice de l'article provenant de la source Math-Net.Ru
The image of the Bethe subalgebra $B(C)$ in the tensor product of representations
of the Yangian $Y(\mathfrak{gl}_n)$ contains the full set of Hamiltonians of the Heisenberg magnet chain XXX.
The main problem in the XXX integrable system is the diagonalization of the operators by which the elements
of Bethe subalgebras act on the corresponding representations of the Yangian.
The standard approach is the Bethe ansatz. As the first step toward solving this
problem, we want to show that the eigenvalues of these operators have
multiplicity 1.
In this work we obtained several new results on the simplicity of spectra of Bethe subalgebras
in Kirillov–Reshetikhin modules in the case of $Y(\mathfrak{g})$, where $\mathfrak{g}$
is a simple Lie algebra.
Keywords:
representation theory, Yangian, Bethe subalgebra, Bethe ansatz.
@article{FAA_2022_56_4_a8,
author = {I. A. Mashanova-Golikova},
title = {Hermitian property and simplicity of spectra of {Bethe} subalgebras in {Yangians}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {105--108},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a8/}
}
TY - JOUR AU - I. A. Mashanova-Golikova TI - Hermitian property and simplicity of spectra of Bethe subalgebras in Yangians JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 105 EP - 108 VL - 56 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a8/ LA - ru ID - FAA_2022_56_4_a8 ER -
I. A. Mashanova-Golikova. Hermitian property and simplicity of spectra of Bethe subalgebras in Yangians. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 105-108. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a8/