On maximal extensions of nilpotent Lie algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 25-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Extensions of finite-dimensional nilpotent Lie algebras, in particular, solvable extensions, are considered.
Some properties of maximal extensions are proved. A counterexample to L. Šnobl's conjecture concerning
the uniqueness of maximal solvable extensions is constructed.
Keywords:
nilpotent Lie algebra, extension, splitting.
Mots-clés : solvable Lie algebra
Mots-clés : solvable Lie algebra
@article{FAA_2022_56_4_a2,
author = {V. V. Gorbatsevich},
title = {On maximal extensions of nilpotent {Lie} algebras},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {25--34},
publisher = {mathdoc},
volume = {56},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a2/}
}
V. V. Gorbatsevich. On maximal extensions of nilpotent Lie algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 25-34. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a2/