Tensor simple spectrum of unitary flows
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 113-117
Cet article a éte moissonné depuis la source Math-Net.Ru
Unitary flows $T_t$ of dynamical origin such that, for any countable $Q\subset (0,+\infty)$, the spectrum of the tensor product $\bigotimes_{q\in Q} T_q $ is simple are constructed. All typical flows preserving a sigma-finite measure have this property.
Keywords:
unitary flow, weak closure, spectrum, tensor product of operators.
@article{FAA_2022_56_4_a10,
author = {V. V. Ryzhikov},
title = {Tensor simple spectrum of unitary flows},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {113--117},
year = {2022},
volume = {56},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a10/}
}
V. V. Ryzhikov. Tensor simple spectrum of unitary flows. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 4, pp. 113-117. http://geodesic.mathdoc.fr/item/FAA_2022_56_4_a10/
[1] O. Ageev, Invent. Math., 160:2 (2005), 417–446 | DOI | MR | Zbl
[2] E. Glasner, J.-P. Thouvenot, B. Weiss, Trudy MMO, 82:1 (2021), 19–44 | MR | Zbl
[3] I. V. Klimov, Matem. zametki, 104:6 (2018), 942–944 | DOI | Zbl
[4] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR
[5] M. S. Lobanov, V. V. Ryzhikov, Matem. sb., 209:5 (2018), 62–73 | DOI | MR | Zbl
[6] S. V. Tikhonov, Matem. sb., 197:1 (2006), 97–132 | DOI | MR | Zbl