Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2022_56_3_a2, author = {O. A. Ivanova and S. N. Melikhov}, title = {Cyclic vectors and invariant subspaces of the backward shift operator in {Schwartz} modules}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {39--51}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/} }
TY - JOUR AU - O. A. Ivanova AU - S. N. Melikhov TI - Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2022 SP - 39 EP - 51 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/ LA - ru ID - FAA_2022_56_3_a2 ER -
%0 Journal Article %A O. A. Ivanova %A S. N. Melikhov %T Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules %J Funkcionalʹnyj analiz i ego priloženiâ %D 2022 %P 39-51 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/ %G ru %F FAA_2022_56_3_a2
O. A. Ivanova; S. N. Melikhov. Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 39-51. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/
[1] O. A. Ivanova, S. N. Melikhov, “On the completeness of orbits of a Pommiez operator in weighted (LF)-spaces of entire functions”, Complex Anal. Oper. Theory, 11:6 (2017), 1407–1424 | DOI | MR | Zbl
[2] O. A. Ivanova, S. N. Melikhov, “Ob invariantnykh prostranstvakh operatora Pomme v prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 142, VINITI RAN, M., 2017, 111–120
[3] J. Mikusiński, “Convolution approximation and shift approximation”, Studia Math., 28 (1966), 1–8 | DOI | MR | Zbl
[4] M. T. Karaev, “Closed ideals in $C^\infty$ with Duhamel product as multiplication”, J. Math. Anal. Appl., 300:2 (2004), 297–302 | DOI | MR | Zbl
[5] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4(208) (1979), 97–131 | MR | Zbl
[6] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford Univ. Press, New York, 1997 | MR | Zbl
[7] L. Hörmander, The Analysis of linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983 | MR | Zbl
[8] R. Meise, B. A. Tayhor, “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26:2 (1988), 265–287 | DOI | MR | Zbl
[9] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR
[10] O. A. Ivanova, S. N. Melikhov, “Ob interpoliruyuschei funktsii A. F. Leonteva”, Ufimsk. matem. zhurn., 6:3 (2014), 17–27 | MR
[11] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR
[12] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[13] P. Shapira, Teoriya giperfunktsii, Mir, M., 1972
[14] L. Hörmander, “Remarks on Holmgren`s uniqueness theorem”, Ann. Inst. Fourier, 43:5 (1993), 1223–1251 | DOI | MR | Zbl
[15] O. A. Ivanova, S. N. Melikhov, “Kommutant operatora Pomme v prostranstve tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi pryamoi”, Vladikavk. matem. zhurn., 20:3 (2018), 48–56 | MR | Zbl
[16] O. A. Ivanova, S. N. Melikhov, “Ob operatorakh, perestanovochnykh s operatorom tipa Pomme v vesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 28:2 (2016), 114–137
[17] A. Aleman, B. Korenblum, “Derivation-invariant subspaces of $C^\infty$”, Comput. Methods Funct. Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl
[18] N. F. Abuzyarova, “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, Dokl. RAN, 457:5 (2014), 510–513 | DOI | MR | Zbl
[19] A. Aleman, A. Baranov, Yu. Belov, “Subspaces ov $C^\infty$ invariant under the differentiation”, J. Funct. Analysis, 268:8 (2015), 2421–2439 | DOI | MR | Zbl