Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 39-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cyclic vectors and proper closed invariant subspaces of the backward shift operator in the Schwartz modules of entire functions of exponential type are described. The results are applied to describe ideals of the algebra of infinitely differentiable functions on a closed or open interval containing $0$ with Duhamel product as multiplication.
Keywords: backward shift operator, cyclic vector, invariant subspace, Schwartz module, Duhamel product.
@article{FAA_2022_56_3_a2,
     author = {O. A. Ivanova and S. N. Melikhov},
     title = {Cyclic vectors and invariant subspaces of the backward shift operator in {Schwartz} modules},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {56},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/}
}
TY  - JOUR
AU  - O. A. Ivanova
AU  - S. N. Melikhov
TI  - Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 39
EP  - 51
VL  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/
LA  - ru
ID  - FAA_2022_56_3_a2
ER  - 
%0 Journal Article
%A O. A. Ivanova
%A S. N. Melikhov
%T Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 39-51
%V 56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/
%G ru
%F FAA_2022_56_3_a2
O. A. Ivanova; S. N. Melikhov. Cyclic vectors and invariant subspaces of the backward shift operator in Schwartz modules. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 3, pp. 39-51. http://geodesic.mathdoc.fr/item/FAA_2022_56_3_a2/

[1] O. A. Ivanova, S. N. Melikhov, “On the completeness of orbits of a Pommiez operator in weighted (LF)-spaces of entire functions”, Complex Anal. Oper. Theory, 11:6 (2017), 1407–1424 | DOI | MR | Zbl

[2] O. A. Ivanova, S. N. Melikhov, “Ob invariantnykh prostranstvakh operatora Pomme v prostranstvakh tselykh funktsii eksponentsialnogo tipa”, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obz., 142, VINITI RAN, M., 2017, 111–120

[3] J. Mikusiński, “Convolution approximation and shift approximation”, Studia Math., 28 (1966), 1–8 | DOI | MR | Zbl

[4] M. T. Karaev, “Closed ideals in $C^\infty$ with Duhamel product as multiplication”, J. Math. Anal. Appl., 300:2 (2004), 297–302 | DOI | MR | Zbl

[5] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4(208) (1979), 97–131 | MR | Zbl

[6] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford Univ. Press, New York, 1997 | MR | Zbl

[7] L. Hörmander, The Analysis of linear Partial Differential Operators I, Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] R. Meise, B. A. Tayhor, “Whitney's extension theorem for ultradifferentiable functions of Beurling type”, Ark. Mat., 26:2 (1988), 265–287 | DOI | MR | Zbl

[9] A. P. Robertson, V. Dzh. Robertson, Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR

[10] O. A. Ivanova, S. N. Melikhov, “Ob interpoliruyuschei funktsii A. F. Leonteva”, Ufimsk. matem. zhurn., 6:3 (2014), 17–27 | MR

[11] H. Whitney, “Analytic extensions of differentiable functions defined in closed sets”, Trans. Amer. Math. Soc., 36 (1934), 63–89 | DOI | MR

[12] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[13] P. Shapira, Teoriya giperfunktsii, Mir, M., 1972

[14] L. Hörmander, “Remarks on Holmgren`s uniqueness theorem”, Ann. Inst. Fourier, 43:5 (1993), 1223–1251 | DOI | MR | Zbl

[15] O. A. Ivanova, S. N. Melikhov, “Kommutant operatora Pomme v prostranstve tselykh funktsii eksponentsialnogo tipa i polinomialnogo rosta na veschestvennoi pryamoi”, Vladikavk. matem. zhurn., 20:3 (2018), 48–56 | MR | Zbl

[16] O. A. Ivanova, S. N. Melikhov, “Ob operatorakh, perestanovochnykh s operatorom tipa Pomme v vesovykh prostranstvakh tselykh funktsii”, Algebra i analiz, 28:2 (2016), 114–137

[17] A. Aleman, B. Korenblum, “Derivation-invariant subspaces of $C^\infty$”, Comput. Methods Funct. Theory, 8:2 (2008), 493–512 | DOI | MR | Zbl

[18] N. F. Abuzyarova, “Spektralnyi sintez v prostranstve Shvartsa beskonechno differentsiruemykh funktsii”, Dokl. RAN, 457:5 (2014), 510–513 | DOI | MR | Zbl

[19] A. Aleman, A. Baranov, Yu. Belov, “Subspaces ov $C^\infty$ invariant under the differentiation”, J. Funct. Analysis, 268:8 (2015), 2421–2439 | DOI | MR | Zbl