Newton Polytopes of Nondegenerate Quadratic Forms
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 92-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We characterize Newton polytopes of nondegenerate quadratic forms and Newton polyhedra of Morse singularities.
Keywords: Newton polytope, Morse singularity.
@article{FAA_2022_56_2_a8,
     author = {A. Yuran},
     title = {Newton {Polytopes} of {Nondegenerate} {Quadratic} {Forms}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {92--100},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a8/}
}
TY  - JOUR
AU  - A. Yuran
TI  - Newton Polytopes of Nondegenerate Quadratic Forms
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 92
EP  - 100
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a8/
LA  - ru
ID  - FAA_2022_56_2_a8
ER  - 
%0 Journal Article
%A A. Yuran
%T Newton Polytopes of Nondegenerate Quadratic Forms
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 92-100
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a8/
%G ru
%F FAA_2022_56_2_a8
A. Yuran. Newton Polytopes of Nondegenerate Quadratic Forms. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 92-100. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a8/

[1] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2009

[2] A. Esterov, A. Lemahieu, K. Takeuchi, On the monodromy conjecture for non-degenerate hypersurfaces, arXiv: 1309.0630

[3] A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor”, Invent. Math., 32:1 (1976), 1–31 | DOI | MR

[4] M. D. Plummer, L. Lovasz, Matching Theory, North Holland, Amsterdam, 1986 | MR | Zbl