Estimation of the Modulus of Hölder Metric Regularity
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 75-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper mainly studies the modulus of Hölder metric regularity. The concepts of a generalized $p$-order Clarke-like set and generalized graphical derivative are introduced and used to estimate this modulus. The main result implies that it is bounded above by the upper limit of the inner norm of the inverse of generalized graphical derivative.
Keywords: generalized $p$th-order Clarke-like set, generalized graphical derivative, $p$th variation.
Mots-clés : Hölder metric regularity
@article{FAA_2022_56_2_a6,
     author = {W. Xu},
     title = {Estimation of the {Modulus} of {H\"older} {Metric} {Regularity}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--81},
     year = {2022},
     volume = {56},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a6/}
}
TY  - JOUR
AU  - W. Xu
TI  - Estimation of the Modulus of Hölder Metric Regularity
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 75
EP  - 81
VL  - 56
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a6/
LA  - en
ID  - FAA_2022_56_2_a6
ER  - 
%0 Journal Article
%A W. Xu
%T Estimation of the Modulus of Hölder Metric Regularity
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 75-81
%V 56
%N 2
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a6/
%G en
%F FAA_2022_56_2_a6
W. Xu. Estimation of the Modulus of Hölder Metric Regularity. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 75-81. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a6/

[1] J.-P. Aubin, H. Frankowska, “On the inverse function theorem for set-valued maps”, J. Math. Pures Appl., 66:1 (1987), 71–89 | MR | Zbl

[2] J.-P. Aubin, H. Frankowska, Set-valued Analysis, Birkhäuser, Boston–Basel–Berlin, 1990 | MR | Zbl

[3] R. Cibulka, A. L. Dontchev, “A nonsmooth Robinson's inverse function theorem in Banach spaces”, Math. Program., Ser. A, 156:1–2 (2016), 257–270 | DOI | MR | Zbl

[4] A. L. Dontchev, A. S. Lewis, R. T. Rockafellar, “The radius of metric regularity”, Trans. Amer. Math. Soc., 355:2 (2003), 493–517 | DOI | MR | Zbl

[5] A. L. Dontchev, “A proof of the Lyusternik–Graves theorem”, Optimization, 64:1 (2015), 41–48 | DOI | MR | Zbl

[6] A. L. Dontchev, R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer, New York, 2014 | MR | Zbl

[7] A. L. Dontchev, M. Quincampoix, N. Zlateva, “Aubin criterion for metric regularity”, J. Convex Anal., 13:2 (2006), 281–297 | MR | Zbl

[8] H. Frankowska, “High order inverse function theorems”, Ann. Inst. H. Poincaré, Sec. C, 6:Suppl. (1989), 283–303 | MR | Zbl

[9] H. Frankowska, “Some inverse mapping theorems”, Ann. Inst. H. Poincaré, Sec. C, 7:3 (1990), 183–234 | MR | Zbl

[10] H. Frankowska, M. Quincampoix, “Hölder metric regularity of set-valued maps”, Math. Program., Ser. A, 132:1–2 (2012), 333–354 | DOI | MR | Zbl

[11] A. F. Izmailov, “Strongly regular nonsmooth generalized equations”, Math. Program., Ser. A, 147:1–2 (2014), 581–590 | DOI | MR | Zbl

[12] B. Mordukhovich, “Complete characterization of openness, metric regularity, and Lipschitzian properties if multifunctions”, Trans. Amer. Math. Soc., 340:1 (1993), 1–35 | DOI | MR | Zbl

[13] Z. Páles, “Inverse and implicit function theorems for nonsmooth maps in Banach spaces”, J. Math. Anal. Appl., 209:1 (1997), 202–220 | DOI | MR

[14] R. T. Rockafellar, R. J.-B. Wets, Variational Analysis, Springer-Verlag, Berlin, 1997 | MR

[15] Y. He, Kung Fu Ng, “Stability of $p$-order metric regularity”, Vietnam J. Math., 46 (2018), 285–291 | DOI | MR | Zbl