Extended Spectra for Some Composition Operators on Weighted Hardy Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\alpha$ be a complex scalar, and let $A$ be a bounded linear operator on a Hilbert space $H$. We say that $\alpha$ is an extended eigenvalue of $A$ if there exists a nonzero bounded linear operator $X$ such that $AX=\alpha XA$. In weighted Hardy spaces invariant under automorphisms, we completely compute the extended eigenvalues of composition operators induced by linear fractional self-mappings of the unit disk $\mathbb{D}$ with one fixed point in $\mathbb{D}$ and one outside $\overline{\mathbb{D}}$. Such classes of transformations include elliptic and loxodromic mappings as well as a hyperbolic nonautomorphic mapping.
Keywords: Composition operator, extended eigenvalue, weighted Hardy space.
@article{FAA_2022_56_2_a0,
     author = {I. F. Z. Bensaid and F. Le\'on-Saavedra and P. Romero de la Rosa},
     title = {Extended {Spectra} for {Some} {Composition} {Operators} on {Weighted} {Hardy} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {56},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a0/}
}
TY  - JOUR
AU  - I. F. Z. Bensaid
AU  - F. León-Saavedra
AU  - P. Romero de la Rosa
TI  - Extended Spectra for Some Composition Operators on Weighted Hardy Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 3
EP  - 9
VL  - 56
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a0/
LA  - ru
ID  - FAA_2022_56_2_a0
ER  - 
%0 Journal Article
%A I. F. Z. Bensaid
%A F. León-Saavedra
%A P. Romero de la Rosa
%T Extended Spectra for Some Composition Operators on Weighted Hardy Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 3-9
%V 56
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a0/
%G ru
%F FAA_2022_56_2_a0
I. F. Z. Bensaid; F. León-Saavedra; P. Romero de la Rosa. Extended Spectra for Some Composition Operators on Weighted Hardy Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 2, pp. 3-9. http://geodesic.mathdoc.fr/item/FAA_2022_56_2_a0/

[1] C. Cowen, B. MacCluer, Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[2] M. Lacruz, F. León-Saavedra, S. Petrovic, L. Rodríguez-Piazza, “Extended eigenvalues for composition operators”, J. Math. Anal. Appl., 504:2 (2021), 125427 | DOI | MR | Zbl

[3] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Boundedness of composition operators on general weighted Hardy spaces of analytic functions, arXiv: 2011.14928 | MR

[4] J. E. Littlewood, “On inequalities in the theory of functions”, Proc. London Math. Soc. (2), 23:7 (1925), 481–519 | DOI | MR | Zbl

[5] N. Zorboska, Composition operators on weighted Hardy spaces, Ph. D. Thesis, University of Toronto, Toronto, 1988 | MR

[6] N. Zorboska, “Compact composition operators on some weighted Hardy spaces”, J. Operator Theory, 22:2 (1989), 233–241 | MR | Zbl

[7] N. Zorboska, “Angular derivative and compactness of composition operators on large weighted Hardy spaces”, Canad. Math. Bull., 37:3 (1994), 428–432 | DOI | MR | Zbl