A Hilbert $C^*$-modules with extremal properties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 94-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a Hilbert $C^*$-module which shows that Troitsky's theorem on the geometric essence of $\mathcal{A}$-compact operators between Hilbert $C^*$-modules cannot be extended to modules which are not countably generated case (even in the case of a stronger uniform structure, which is also introduced). In addition, the constructed module admits no frames.
Keywords: Hilbert $C^*$-module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, locally compact space, Radon measure.
@article{FAA_2022_56_1_a6,
     author = {D. V. Fufaev},
     title = {A {Hilbert} $C^*$-modules with extremal properties},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/}
}
TY  - JOUR
AU  - D. V. Fufaev
TI  - A Hilbert $C^*$-modules with extremal properties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 94
EP  - 105
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/
LA  - ru
ID  - FAA_2022_56_1_a6
ER  - 
%0 Journal Article
%A D. V. Fufaev
%T A Hilbert $C^*$-modules with extremal properties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 94-105
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/
%G ru
%F FAA_2022_56_1_a6
D. V. Fufaev. A Hilbert $C^*$-modules with extremal properties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 94-105. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/

[1] N. Burbaki, Obschaya topologiya: Ispolzovanie veschestvennykh chisel v obschei topologii. Funktsionalnye prostranstva. Svodka rezultatov, Nauka, M., 1975 | MR

[2] M. Frank, D. R. Larson, “A module frame concept for Hilbert $C^\ast$-modules”, The functional and harmonic analysis of wavelets and frames, Proceedings of the AMS special session (San Antonio, TX, 1999), Contemp. Math., 247, Amer. Math. Soc., Providence, RI, 1999, 207–233 | DOI | MR | Zbl

[3] M. Frank, D. R. Larson, “Frames in Hilbert $C^\ast$-modules and $C^\ast$-algebras”, J. Operator Theory, 48:2 (2002), 273–314 | MR | Zbl

[4] D. J. Kečkić, Z. Lazović, “Compact and “compact” operators on standard {H}ilbert modules over $W^*$-algebras”, Ann. Funct. Anal., 9:2 (2018), 258–270 ; arXiv: 1610.06956 | DOI | MR | Zbl

[5] E. C. Lance, “Hilbert $C^*$-modules. A toolkit for operator algebraists”, London Math. Soc. Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[6] Z. Lazović, “Compact and “compact” operators on standard Hilbert modules over $C^*$-algebras”, Adv. Oper. Theory, 3:4 (2018), 829–836 | DOI | MR | Zbl

[7] V. M. Manuilov, E. V. Troitsky, “Hilbert $C^*$- and $W^*$-modules and their morphisms”, J. Math. Sci., 98:2 (2000), 137–201 | DOI | MR | Zbl

[8] V. M. Manuilov, E. V. Troitskii, ${C}^*$-gilbertovy moduli, Faktorial Press, M., 2001

[9] E. V. Troitsky, “Geometric essence of “compact” operators on Hilbert $C^*$-modules”, J. Math. Anal. Appl., 485:2 (2020), 123842 | DOI | MR | Zbl

[10] D. Bakić, B. Guljaš, “On a class of module maps of Hilbert $C^*$-modules”, Math. Commun., 7:2 (2002), 177–192 | MR | Zbl

[11] D. Bakić, B. Guljaš, “Extensions of Hilbert $C^*$-modules, I”, Houston J. Math., 30:2 (2004), 537–558 | MR | Zbl

[12] H. Li, “A Hilbert $C^*$-module admitting no frames”, Bull. Lond. Math. Soc., 42:3 (2010), 388–394 | DOI | MR | Zbl

[13] E. V. Troitskii, D. V. Fufaev, “Kompaktnye operatory i ravnomernye struktury v gilbertovykh $C^*$-modulyakh”, Funkts. analiz i ego pril., 54:4 (2020), 74–84 | DOI | MR | Zbl

[14] R. Engelking, Obschaya topologiya, Mir, M., 1986

[15] L. A. Steen, J. A. Seebach Jr., Counterexamples in Topology, Springer-Verlag, New York, 1978 | MR | Zbl

[16] J. R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000 | MR | Zbl

[17] D. H. Fremlin, Measure theory, v. 4, Torres Fremlin, Colchester, 2003 | MR | Zbl

[18] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR

[19] K. Kuratovskii, A. Mostovskii, Teoriya mnozhestv, Mir, M., 1970

[20] Lj. Arambašić, D. Bakić, “Frames and outer frames for Hilbert $C^*$-modules”, Linear Multilinear Algebra, 65:2 (2017), 381–431 | DOI | MR | Zbl