A Hilbert $C^*$-modules with extremal properties
Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 94-105

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a Hilbert $C^*$-module which shows that Troitsky's theorem on the geometric essence of $\mathcal{A}$-compact operators between Hilbert $C^*$-modules cannot be extended to modules which are not countably generated case (even in the case of a stronger uniform structure, which is also introduced). In addition, the constructed module admits no frames.
Keywords: Hilbert $C^*$-module, uniform structure, totally bounded set, compact operator, $\mathcal{A}$-compact operator, locally compact space, Radon measure.
@article{FAA_2022_56_1_a6,
     author = {D. V. Fufaev},
     title = {A {Hilbert} $C^*$-modules with extremal properties},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {94--105},
     publisher = {mathdoc},
     volume = {56},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/}
}
TY  - JOUR
AU  - D. V. Fufaev
TI  - A Hilbert $C^*$-modules with extremal properties
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2022
SP  - 94
EP  - 105
VL  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/
LA  - ru
ID  - FAA_2022_56_1_a6
ER  - 
%0 Journal Article
%A D. V. Fufaev
%T A Hilbert $C^*$-modules with extremal properties
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2022
%P 94-105
%V 56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/
%G ru
%F FAA_2022_56_1_a6
D. V. Fufaev. A Hilbert $C^*$-modules with extremal properties. Funkcionalʹnyj analiz i ego priloženiâ, Tome 56 (2022) no. 1, pp. 94-105. http://geodesic.mathdoc.fr/item/FAA_2022_56_1_a6/